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ABSTrACT
Provided is an introduction to the Droperties of

continued fractions for the intellectually curious high school
student. Among the topics included are (1) Expansion of Rational
Numbers into Simple Continued Fractions, (2) Convergents, (3)
Continued Fractions and Linear Diophantine Fractions of the Type am +
hn = c, (4) Continued Fractions and Congruences, (5) Continued
rractions and Determinants, (6) Practical Applications of Continued
Fractions, (7) Continued Fractions and Quadratic Irrational Numbers,
(R) Continued Fractions and Pell's Equation, (9) Initially Repeating
Continued Fractions and Quadratic Equations, and (10) Initially
Repeating Continued Fractions and Reduced Quadratic Irrationals. Also
included are proofs that show new relationships between bits of
familiar mathematics, exercises that demonstrate the properties under
investigations, answers to exercises in the appendix, and historical
notes on the men who first worked with continued fractions. (RP)
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PREFACE

My purpose in writing this booklet is to introduce you to a fascinating
topic : the properties of continued fractions. I hope that you will not
find difficult this informal presentation of a topic that I find most in-
teresting. It is not meant to be difficult. These ideas are usually
presented in books dealing with the theory of numbers, and the discus-
sions and proofs found in these books are usually written for college
students of mathematics. However, I feel that the intellectually curious
high school student should have an opportunity to study a presentation
of continued fractions written especially for him. Through a study of
continued fractions you should gain increased insight into those proper-
ties of our number systems which are being emphasized today in modern
courses in mathematics.

CHARLES G. MOORE
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FOREWORD

Sihce the very appearance of a continued fraction will probably be
new to you, it will not seem obvious what results should be expected
from a particular discussion. Thus you have here an opportunity to
investigate mathematical situations in which creative thinking is called
for and is rewarded. I hope you will discover in your investigation of
continued fractions many properties that are surprising and exciting.
For this reason I have placed some of the more lengthy proofs at the
end of the booklet. You may study them after you have become familiar
with the property with which the proof is concerned. You should not
feel that the proofs which are included in the text are placed there ex-
elusively for the purpose of proving one particular point. One of my
principal purposes in presenting the proofs is to help you see new rela-
tionships between bits of mathematics with which you are already famil-
iar. Exercises have been included which have been designed for the
purpose of helping you appreciate more fully the properties under in-
vestigation. Answers to all of the exercises will be found in Appendix B.
Historical notes accompany certain discussions to help give you a knowl-
edge of the men who first worked with continued fractions.

I believe that you will find continued fractions fun to work with. It
is toward this end that I have used throughout this booklet the more
eye-catching elementary form for writing continued fractions instead of
adapting oke of the more concise notations usually found in books con-
cerned with number theory.

vii



CHAPTER 1

EXPANSION OF

RATIONAL NUMBERS

INTO CONTINUED

FRACTIONS

SIMPLE CONTINUED FRACTIONS

The continued fraction corresponding to a rational number - is an

expression of the form:

r
=. a

1 1
l + Ex. ,.... 3+

8 1
Ex 37

128
1

a2 + 2 +
1 1

423 + 5 -I-

a4 -I- 1 + 11

a.

In this expression for all of the a's are positive integers with the

exception of al, which may be negative. These a's are called the terms

of the continued fraction. The terms of the continued fraction for W
are the numbers 3, 2, 5, 1, and 2. The continued fraction for IP can

be obtained as follows:
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128 4.7 1

2 +
1

37 2 + 1

17 17 17

13+ 3 4.
1 1

2 + 2 +
15+ T

1 13 +

2

2 +

3

1

In this booklet we will be dealing with simple continued fractions only;
i.e., those where all of the numerators after al are 1. If the numerator of
the given fraction is smaller than the denominator, then al is 0.

Ex.
3vi=o+7=0.447_=0+

2 +

Exercise Set 1

Expand the following rational numbers into continued fractions.

, 75 a 29 25 A 13 r 79 50 ry 1363
Ti A. 0. Tr i§ v. 5

8 422

To evaluate a given continued fraction we may begin at the end and
"work our way back up."

Ex. 1 = 1+
1

1 +
1 1

2 + 2 +
13

3 + -4 4

1 13 43
1 +

30
- = 1 + 56 .=

30
13

1+ 1

2+

Exercise Set 2.

Evaluate the following continued fractions.

1

1+ 12 +
2 + -15

1
2.04 1

6 +
3. 1 +

1 1

2+ 13 +
4 +

5

1

4 + -5



EXPANSION OF RATIONAL NUMBERS 3

If the given rational number is negative, then it is handled as the
following example illustrates:

13 5 1 1 1i 2 + i-, = 2 + 9 = 2 +
1 +

2 -I-
4 1

5
.8. 1 +

4

2 1

1+ 1

1 -4-

Note: 2 was selected for ai because 2 is the largest integer which
is less than --v.

Exercise Set 3

Expand the following rational numbers into simple continued frac-
tions.

1 .
-15

T 2.
23 7115

3.

Historical Note on Continued Fractions

Continued fractions were first investigafri p:ietro Cataldi.1 He
was born in Bologna, Italy, in 1548. 1. 1, was a mathematics
teacher, and his primary mathematical interest was in perfect numbers.
A perfect number is one which is the sum of its divisors (not counting the
number itself as a divisor). For example, 28 is a perfect number because:
the divisors of 28 are 1, 2, 4, 7, and 14; and 1 + 2 + 4 -I- 7 + 14 = 28.
Perhaps you can find more numbers with this property. In the year
1613, Cataldi found approximations for the square roots of numbers by
using continued fractions, but he did not make a detailed investigation
of continued fractions.'

Leonhard Euler, who was an 18th century Swiss mathematician, first
used the expression fractio continua as a name for continued fractions.
The German word for continued fractions is kettenbriiche (chain frac-
tions). This name has only been in use since the beginning of the 19th
century.3

1 Eaves, Howard. An Introduction to the History of Mathematics, New York: Rine-
hart and Co., 1953. pp. 225-26.

$ Fink, Karl. A Brief History of Mathematics, London: The Open Court Publishing
Co. 1910. p. 131.

$ /bid, p. 132.
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TERMINATING CONTINUED FRACTIONS

All of the continued fractions that we have obtained by expanding
rational numbers have come to an end. Would the continued fraction
of every rational number terminate? Let us again examine the process

3
of expanding First we divide 128 by 37: 37)128. Note that the

111
17

remainder, 17, must be smaller than 24; for if it is not, then 3 is too small
a number for the quotient. Now there is only a limited number of
positive integers less than 37. The next division involved in the ex-

2
pension is as follows: 17)37. What must be true of the remainder, 3?

34
3

This remainder, of course, must be less than 17, which is less than 37.
5

The next division in the expansion is 3)17, and the remainder, this time,
15
2

must be a positive integer less than 3. The remainders form a decreasing
sequence of positive integers; i.e., 17, 3, 2, ; and so we must even-
tually get a remainder of zero; and at this point the expansion process is
terminated. Continued fractions of this type are celled terminating
continued fractions.

THEOREM 1. Every rational number can be expanded into a terminat-
ing continued fraction.

Perhaps you would like to write a proof of Theorem 1. Proof No. 1
in Chapter 12 gives a proof of this theorem.

Also as a result of your practice with the exercises in Set 2 you may
conclude that the following is true.

THEOREM 2. Every terminating continued fraction can be written
as a rational number.

No proof of Theorem 2 will be given.
Could it be possible for a given rational number to be represented by

more than one continued fraction? That this is not possible seems rather
obvious when one considers our discussion of the remainders invOlted
m the expansion of the rational number 4v. However, the proof that
rational numbers cannot be represented by more than one Continued
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fraction should be interesting, in that the proof makes use of concepts
that are already familiar to you.

DEFINITION: We shall say that two simple continued fractions

are equal (f and only if their corresponding terms are equal.

THEOREM 3. Every rational number can be represented by only one

simple continued fraction.

Proof. Suppose that

1
al -I- and di -I- 11

a!-I- a', -I-
as + a's +

1 1
ii- + ;a .

are both continued fractions that represent the rational number 81:.

Then we have
1

= al + = ail +
1

8 1 1
432 + a, -I-

a, + a', -I-

1

1

a.

Now ai is the largest integer less than -rs, and cs'i is also the largest integer

less than r, so ai = a'i. We now have /-
8

a1 = II a'1. Let us set
8 8

'-' - a1 =8 11. El. is less than 1 because a1 is the largest integer less than .19.

8 SI. 81 s

r r1 1 1
al = as ..,

s Si 1 1
as + a', 1-

as + a's + . . 1

a. -I- al.

The reciprocal of a positive number less than 1 is greater than 1; there-

fore !I is greater than 1. Since it is also true that if two non-sero num-

bers are equal, their reciprocals are equal; we can write:

1= a, + as +
+ a.

= + 1

a', -I-
,+ 7-a
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Again, as is the largest integer lees than , and a's is also the greatest
r1

integer less than ; therefore, as a's. The same reasoning can be

used to show that as a's. Therefore the continued fractions

1 1
an a'l

1
d 1+as -I- a, + 1

an

1

a

which we assumed to represent the number must be equal by our

definition of equality. We conclude that every rational number can
be represented in only one way as a simple continued fraction.



CHAPTER 2

CONVERGENTS

DEFINITION OF CONVERGENTS

If any of the terms are dropped from the end of a continued fraction,
the rational number which is represented by the part retained is called

a convergent. For the number

al + 1

1a: +
1

we may write:

the first convergent is CI al,

as +
1

04 + as

the second convergent is C,
1

the third convergent is C,
1+ 1'as + al

etc.

128For -- 13 +
37 1

3 +2+
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we may write: C1 am 3 aa 3

1
C2 ow 3 + § aa

7

Cs all 3 + 1 ma
38

1 112 + 3

C4 us 3 +
1

2 + 1
5 +11

45
13

.

1 128Ca= 3+
1 372+

15+
1+2

herds* Se 4

Find all of the convergents for the following continued fractions.

11. 2 + 1 2. 5 1- 3. 3 + 1

1 1 1l+
1 4+ 2+ 1

2+ 3+ 5 4+1 + § 6 + f

We now seek a formula which will enable us to evaluate more rapidly
the convergents of a continued fraction. Let C. represent the nth
convergent. Let 7'. and 8 represent respectively the numerator and
the denominator of C.

C1 an al; so ri at ai, and 81 1.

C2 x ai +
a4
1- =

as
alas + 1 , so rs an alas + 1, and as .. as.

1 1 as
Cs + . + = -a: + aalas + 1 ads + 1

as + a,a, as

aiasas + al + as as(aia2 + 1) + al
asas + 1 a=ss + 1

Note: alas + 1 a= r2, as as, 1 a= 81.

SIC
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Substituting, we have

a", +
oast + Si

giving:

By a similar substitution, we can get

C4
(zoo +
Ns, + giving:

aro+3i
ao = ass: + Si.

(too
aoso + 82. A.

We seem to have a pattern evolving, and we find after studying the
expressions for Co and Co that the formula for C. seems to be

ril ao.-1I + 8n-2

If the formu's for C. is to involve Si,.- and 4.4, we must
decide what values to assign to ro, r-1, So, and eL.I. We have seen that
the formulas are valid for n = 3 and for n = 4. Are they true for n = 2
and for n = 1? The formula states ro = aor, ro. We know ro au alai + 1,
and that ri = al. Therefore our formula is applicable to ro, if we de-
fine ri to be 1. The formula states ao = a281 + so. We know as as alp
and Si 3. 1. Therefore the formula will be applicable to so, if we define
so to be 0. The formula states ri = airo r_1. We know ri = al, and
ro = 1. Therefore the formula will be valid for r,, if we define to
be 0. Again we look at the formula and note that al = also +
Now since we have SI = 1 and so = 0, the formula will further be valid
for Si, if we define S.., to be 1. We now adopt the following definitions:

= 0, 8_1 = 1, ro an 1, and so = 0.

Our formulas are true for n = 1, 2, 3, and 4. This suggests a proof
by mathematical induction. We must show that when the formulas
are true for any integer m they are also true for m + 1. For the comple-
tion of the proof, see Proof No. 2 in Chapter 12.

PRACTICE IN FINDING THE CONVERGENTS OF A CONTINUED FRACTION,
USING THE FORMULAS FOR ri, AND s,

EXAMPLE. To find the convergents for

384 _L. 1

157 12 +
1

8 +
first, set up a table as shown in Table I.
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TAILS I

n 1 0 1 2 3 4 5
a. 2 2 4 8 2
r.
a.

Next, fill in the table for 3. 0, ro = 1, 8_, = 1, and 80 =0, as defined.
You always start by filling the n = 1 and n = 0 columns for r and a
as shown in Tables II and III.

TABLI II

n 1 0 1 2 3 4 5

0 1

a. 1 0

airo r-.1 0
ai also A- 8_1 2.0 I

SI

etc.

aei ro 2.2 1,= a=
a281 + 80 2.1 0

TAILS III

n 1 0 1 2 3 4 5
a. 2 2 4 8 2
r. 0 1 2 5 22 181 384

1 0 1 2 9 74 157

With a little practice you will see that a convergent table can be
filled in very rapidly. The last convergent must be equal to the rational
number the continued fraction represents. This gives you a very good
check on your arithmetic.

Exorcise Sot 5

Make convergent tables for the following fractions.

25 17 37 43 19 151 1331. if 2. u 3. To 4. 5. -,F3 6. -5-4 7. 70-
19

Historical Not. on Convargents of Continued Fractions

The first mathematician to investigate methods for calculating the
convergents of a continued fraction was Daniel Schwenter. Schwenter
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did this work in 1625.4 Schwenter, like Cataldi, was interested in perfect
numbers' The formulas that we have just developed were first de-
veloped by John Wallis': In 1650, Wallis found that

2.2.4.4.6.68...
5 144.5444w'

Lord Brounkee rewrote this expression as the following continued
fraction:

12

i 1 + 2 + 32

2 + 2 +
Now let us examine a particular convergent table. For example, the

convergent table for -111! is as shown in Table IV.

TAIL' IV

n 0 1 2 3
a 2 1 2
r o antjuwej 167
a MIDinhCM 19 61

Note, for example, the differences in the various crisscross products
as they are indicated in Table IV.

EXAMPLE.
1.1 0.0 -+1
2.0 1.1 = 1
3.1 1.2 = +1

8.1 3.3 = 1
11.3 4.8 = +1
52.4 -- 19.11 = 1
167.19 61.52 = +1

Now go back and examine your other convergent tables and see if

you find a similar relationship there. If you find that the differences
in the crisscross products as found above give you alternately + l's

4 Fink, Karl. A Brief History of Mathematics. London: Open Court Publishing Co.,
1910. p. 131.

6 Dickson, Leonard Eugene. History of the Theory of Numbers New York: G. E.
Stechert and Co., 1934. p. 11.

Fink, op. p. 132.
7 Eaves, Howard. An Introduction to the History of Mathematics, New York: Rein-

hart and Co., 1953. p. 92.
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and 1's, then, what is the formula which is suggested?

Answer: (-1)4.

Exsrcis Set 6

Complete the following convergent table (Table V) and calculate
r...0 for n 1 through n .2 6.

TABLE V

n
I 1 0

'
1 2 3 4 5 6

a. 2 3 1 3 4 1r 0 1

8. 1 0

Suppose the formula turns out to be true for all cases. Would it be
of any use to us? Look at the last difference of crisscross products in
the example: 167.19 61.52 = 1. This can be written as 167( 19) +
61(+52) = 1. Thus, 19 -and 52 are integral solutions to 167X +
61Y = 1. It seems that the formula might be useful, so let us see if we
can find a way to prove it. Toward this end we examine a general table
of convergents (Table VI).

TABLE VI

n 1 0 3 4
a. al as as a4

ra r-.1 = 0 ro = 1 r1 r2 rs r4s 8_1 --= 1 80 = 0 81 82 811 84

Evaluating differences of crisscross products in the same manner as
before, we get

ro8-1 r-gto = 1.1 0.0 = 1.
roo ro81 = n.0 1.81 =

But, s1 = 1;
so we have roo root' = 1.

rtsi rts2 =

Previously we found the following relationships:

r2 = alas + 1, a1 = r1, ro = 1, and ro = (tin ro.

Also: 82 = as, so = 0;81 = 1, and 82 = 82.1 + 0; so 82 = ass' + so.
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Making substitutions of equivalents, we get the following:

real roz 111 Mao% r0 ri(0181 -I- 80

aiatri 8iro atroi r180

ss 1.1 rs.0

rots ros us +1.

To evaluate rots rots, we note from previous work that

rs = asrs rs, and 83 = ass, 81.

Substituting these values, we have the following:

rails rots = Maar: -F rs) rs(asz2 -F

= Issasrz 8sri /lases rssi

= azri rs8i,

311r -1(r ,81 rot=),

We have just seen that

therefore,

nth rots = 1;

rs8s rsas = 1.

Summarizing our work we have these results:

to8-1 rsilo =

£180 roal = 1
r281 rots = +1

rot rots = 1.

The general formula seems to be

resni rn-on = ( 1)".

This formula has worked in four cases. Will it work for all :cases?

The proof, given in Chapter 12 as Proof No. 3, is carried out in con-

siderable detail. It can be used to illustrate how we might go about

seeking relationships which will enable us to complete a proof by mathe-

matical induction.
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Examine further the convergents you have in your convergent tables.

Each convergent, rn, is a fraction. Can you reduce any of these fractionss
to lower terms? Try it. You will find that each of these convergents
is a fraction in lowest terms. Is this surprising? When we say a frac-
tion is in lowest terms we mean that there is no integer which will divide

evenly both the numerator and the denominator. Another way of saying
this is to state that the numerator and denominator are relatively prime.r

Let us now prove that every convergent, , of a continued fraction is8
always in lowest terms.

Proof. We have already proved the general formula:

= (-1) n.

We now wish to show that r and 8n are relatively prime. The statement
that r and 8n are relatively prime means that there is no integer which
will divide evenly both r and 8. Now let us assume that there is some
integer b (b 0 1) that will divide evenly both rn and 8. If there exists

such an integer, we could write r = ki and

are integers. Therefore

rn = Nei and 8n = bk2

and if we substitute these expressions in

we have

and

8` = k2, where ki and k2
b '

r,on = (-1)*/
(bk1)81,...1 rn....1(bk2) 1)8

b rfPik2) 1)16.

Note: If n is even, then ( 1)n is +1; if n is odd, then ( 1)n is 1.
The last equation states that there is an integer b 0 1 which is a divisor
of +1 or 1. But there is no such integer. Since our supposition has
lead us to a false conclusion, we must conclude that our assumption
that r and s have a common divisor is false. Thus we have proved the

following theorem:

THEOREM 4. Each convergent is in lowest terms.
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Now look carefully at the convergents in your tables and see if you can

discover any interesting properties that have not already been men-

tioned. Consider the convergents for W which are as given in Table

VII.
TABLE VII

G I G Cs C4 CS

3 7 38 45 128
1 1 Ti Ti 37

3 34 3-ili
3.181 344

3 3.5 3.455 3.462 3.459

The convergents for 444 are as given in Table VIII.

TABLE VIII

Cl C2 G C4 CS
1I 3

1
107 43

30
225
157

1 li 14 ig 116587

1 1.5 1.4285 1.4333 1.4331

In these examples (Tables VII andVIII) the convergents are alternately
greater and less than the rational number the continued fraction repre-

sents. The last convergent is, of course, exactly this rational number.

We shall now show that this is always the case. We start by consider-

ing the difference between any convergent, C., and the previous con-

vergent,

C. C._i rn
rfl_i r.8._1 ( 1)"

8n 8n-1 8n-18n 8n--18n

C.+1 C. = rn+1
snia 8n 8n1-18n 8n-1-18n

rnsn-1-1
( 1)n-1-1rn rn-1-18n

Now the s's are positive integers, so both s and_n n ani _s sn will always be

positive. If n is even: ('-'1.)n is +19 and ( 1)n+1 is 1. If n is odd:
( 1)n is 1, and ( 1)n+1 is 1. So in either case C. Cn.4 and

C.+1 C. will have different signs. Again, the s's are always positive

integers. Also each s is larger than the preceding s, so
1 1

Sn+18n 8n8n-1

And now, making use of the "absolute value" symbols, we have the

following:
(-1)n I I (-1)n-1 I
8n+1871 8011-1 I
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This means that each convergent is nearer to the value the continued

fraction represents, -ri than the preceding convergent. Also, al is always

less than at being the largest integer less than 0. Also, since the last

convergent is equal to 1:81 we now have proved the following:

THEOREM 5. The odd convergent. form an increasing sequence of

numbers which are all less than
8."

(except that the last number is

equal to 198 if n in the number of convergents is odd), and the even-

numbered convergents form a decreasing sequence of numbers which

are all greater than the value ri (except that the last number is equal

to - if the number of convergents is even).

We can represent the situation as follows:

rs rs r7 r rs r4

as as 87 -8 76 84 88

We have been discussing the fact that all of the convergent' except

the last are different from II. The question which arises naturally at

this point is: How much do the various convergents differ from 1-98? We

now attempt to answer this question. Let us state the question more

precisely as: How great is the difference between a given rational num-

ber, 1.81 and the ith convergent, :, of its continued fraction? As a start

we consider the relationship of the ith term ai to the rest of the continued

fraction.

= -I-
1

1
as +

as -I-

-I- a; -I-
1

I
isi+1

ak.s

1

Ri+1
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We see that

a 4.1
aio

, 1
-I- a.

1

17

is a terminating continued fraction and thus represents a rational num-
ber. Let us call this number Ri.1.1. We can now write the original
continued fraction as follows:

- = ai 1

1
as + as +

Considering this continued fraction as having i + 1 terms, we note

that r = 92r . Then applying the formula for the i lth convergent
8 8i+1

we proceed. We are interested in the size of the difference between

and ri, that is r. - so we write:
8 8i 8 8;

r r(4.1 /if Rwri ri-i r,
8 8; 841 8; 8i-i 8,

rf-.181 /lions;
8i(Ri+Oi 8$-.1)

ri-181 ri8i-1
8i-i)

But = +1;
therefore, r ri +1

8 8i 8i(R418; si-i)

Now Ri+1 > a; .i because ai.1.1 is a positive integer, and 1141 is the same
positive integer plus the rest of the continued fraction. Note now that,
since decreasing the size of the denominator results in making a fraction
larger, we have:

But

r ri < 1
,

8 8i 8ikaio8i

a, +1 8; s; +1;

so we now have r _ri 1

I8 8; 8i8i+1

I
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1
This inequality states that -r-1 always lies between and

it sow
+ 1

atai+1

To illustrate the use of this formula let us investigate the size of the
difference between AY and its third convergent. The convergent table
for w is given in Table IX.

TAILS IX

1 0 3 4 5
as 2 3 1 51 4
Fri

r 0 1 2 7 9 52 217
4,, 1' 0 1 3 4 23 96

217 r, 1

96 ss I soh

4.23
217 9

96 1 r2±11

217 9

Answer: 0.011 i.217 9
96

When giving this type of answer in decimal form, be certain to round-
off the decimal upward and not downward. Can you explain why you
should not round-off downward?

Exercise Set 7

Investigate the size of the difference between the given number and
its specified convergent. Use the formula and state your answer in

decimal form.

1. NW and f,ts third convergent.

2. 41-1 and i13 fourth convergent.



CHAPTER 3

CONTINUED FRACTIONS

AND LINEAR DIOPHANTINE

EQUATIONS OF THE TYPE

am ± bn c

DEFINITIONS

An equation of the type am + bn 11 c, where a, b, and c are integers
and for which integral solutions are required, is called a linear diophantine

equation or an indeterminate equation. Integers which when substituted
for m and n make the equation a true statement are called solutions for

the equation.
a b

To find solutions, form the fraction
b
- or - Place the larger value

a
in the numerator. Assume we use a Expand this fraction into a con-

tinued fraction. Then if there are n terms in the continued fraction,

use the formula:

But

so-i SIR (

a r.
b s,,
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Substitution gives as _, ('"'1)14.

If n is even, then

a(s.4) NE 1 and and N..,
are solutions for this equation. If n is odd, multiply both sides of theequation by 1. But we want solutions to

am + bn c, not to atn bn a 1.

To get these solutions, multiply both sides of a(8,1) = 1 byc, getting

a(ce....1) b(cr....1) c.

Thus, solutions to the equation am + bn c are

m .11 cs..4 and n .

EXAMPLE. Find integral solutions for the following equation:
83m + 118n - 3.

118 11 +
83 1

2+ 1

2+ 11+
12 + I

TABLE X

n 1 0 1 2 3 4 5 6
a. 1 2-2 '1 2 4
r. 0 1 1 -3 7 '10 27 118
s. 1 0 1 2 5 7 19 83

Using = ( I) with n = 6,
we have the following:

rs1 rot = ( 1)
118(19) 27(83) a ( 1)1

83( -27) + 118(19) = 1.
Now multiplying both sides of this equation by 3, we have the following:

3.83( 27) + 3418(19) = 3.1
83( 81) + 118(57) = 3.
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We see that m = 81 and n 57 are solutions to the equation
83m + 118n = 3. You should check these answers by substituting
them into the equation.

Can solutions to equations of this type always be found? Let us
investigate this question by considering five integers a, b, c, m, and r
with the following properties:

1. a and b are both divisible by some integer k 1. This means
a so ku, and that b kv for integers u and v.

2. k is not a divisor of c.

3. am + bn c.

Substituting from 1 in the equation am bn c, we get:

(ku)m (kv)n c

k(um vn) = c.

This implies that k is a divisor of c, and this contradicts the second
property. This means that integers with the three properties listed
above cannot be found. It also means that not all equations of the type
am bn = c, where a, b, and c are integers, have integral solutions;
2m 4- 4n = 3 is an example of such an equation.

Would you care to try to find integral solutions for the equation
2m + 4n = 3? If you can find integers which, when substituted for
m and n, make the equation a true statement, then 3 is divisible by 2

Exercise Sot 8

Using continued fractions, find integral solutions for the following

equations.

I. 31x + lly sat 2 2.13x 4- 54y = 2 3.85x 30y = 5

4. 217m 105n = 6 5. 33m + 19n = 100 6. 74m 253n = 1

Suppose we find a pair of integers that satisfy the equation am + bn

c. Are these the only solutions? To answer this question, let us in-
vestigate the equation 83m 4- 118n = 3 more closely :

83m 4- 118n = 3 and 83( 81) + 118(57) = 3.

Since both of the left-hand members are equal to the same number,
we have the following:
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83m + 118n = 83( 81) + 118(57)

83m 83( 81) = 118(57) 118n

83(m + 81) = 118(57 n).

Now 83(m + 81) and 118(57 n) are equal; therefore, they must
have the same factors. But note that 83 and 118 cannot have a com-
mon factor because s is a convergent, and we proved that all con-
vergents are in lowest terms. So 83 must be a factor of 57 n, and
118 must be a factor of m + 81. We now have the following equations:

m + 81 = 118/ and 57 n = 83t for some integer t.

m= 81 + 118/ n = 57 83t.

If m and n are solutions to 83m + 118n = 3, another pair of integers
satisfying the equation can be found by substituting any integer for
in the expressions for m and n. For example, let us by letting t equal 2,
find another pair of integers which satisfy the equation 83m + 118n = 3:

m= 81 + 118(2) and n = 57 83(2)

m= 81 +236 n = 57 166

m= 155 n= 109

so m = 155 and n = 109 are solutions for 83m + 118n = 3. You
should check these values by substituting them into the equation.

birds. Set 9
Using the integers indicated below as values for I, find a second pair

of integers which will satisfy each of the equations in Exercise Set 8
(omit the fourth equation in the set). Answers resulting from the follow-
ing values fort are given in Appendix A, but any other integer would
give valid solutions.

I. = 2 2. = 3 3.t= 1 5.t--2 6. 1



CHAPTER 4

CONTINUED FRACTIONS

AND CONGRUENCES

SOME DEFINITIONS AND EXAMPLES

The expression a b(mod m) is read "a is congruent to b modulo
m" and means: a and b have the same remainder when they are divided
by m. The number m is called the modulus. For example: 5 MI 17(mod 3)
is a true statement, because both 5 and 17 have a remainder of 2 when
they are divided by 3; but 21 33(mod 10) is not a true statement,
because 21 and 33 have different remainders upon division by 10.

We can also have congruences involving unknowns such as ax
b(mod m). A solution for this congruence is a number which when
substituted for x will make the congruence a true statement. The
number 27 is a solution to the congruence 7x 9(mod 5), because
7.27, or 189, and 9 both have a remainder of 4 when they are divided
by 5. It is also true that if any integral multiple of the modulus is
added to a given solution we obtain another solution. In the case just
given, 27 was a solution; so 27 + 2.5, or 37, is also a solution. Check:
7.37 a= 259; and division of 259 by 5 will also give a remainder of 4.

To find solutions for ax b(mod m) by continued fractions, let us

consider the continued fraction for The last convergent will of course

be
a If there are n convergents, let us substitute r. = a and a. = m

in the formula ron-i r%_18% ( 1)11, getting the following:
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(-1)"
(-1)8= a

ax = as.-4 = a(r"-im (-11 = rw-im (-1)".a

Now divide both (-1)" and 1 by the modulus m.

0
m)N-im (-1)" m) 1.

r"-,m 0
( -1)"

The remainders are ( -1)" and 1. If n is even, ( 1)n is 1; and 8,1 is
a solution for ax gm 1(mod m). If n is odd, consider 4_1. Substitut-
ing 4_1 for x, we have the following:

ax = a(-8,1) = a( r" -1m =
a

Divide N-im Ow" by the modulus m.

m)rn_on, (-1)n+t
r" -IM

rn_on 1)ft+1.

If n is odd, then (-1)n+1 is 1.

We conclude that if the number of convergents is even, 4_1 is a
solution for ax 1(mod m); and if n is odd, 8,1 is a solution for
ax 1(mod m). But we need a solution for ax b(mod m). So, if
a(es...1) 1(mod In) is a true statement, let us multiply both sides of
this congruence by b, getting albs "_,) ME b(mod m). Then bes..-1 is a
solution, if n is even; and U"-, is a solution to ax a b(mod m), if n
(the number of convergents for Tn-a ) is odd.

Let us now use continued fractions to solve a convergent.

EXAMPLE. Find a solution for 1 lx 13(mod 7).
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11 = + 1

1+
1 +3

TABLE XI

n 1 0 1 2 3 4
an 1 1 1 3'
I.. 0 1 1 2 3 11

8. 1 0 1 1 2 7'

25

In this case n is 4; and since n is even, s_1 (or as which is 2) is a solution to

1 lx is i(mod 7);

so we write 11.2 as 1(mod 7).

Now multiplying by 13, we have

11(2.13) an 13(mod 7).

So 2.13, or 26, is a solution for 1 lx er 13(mod 7).. You may check by
dividing both 26.11 and 13 by 7. You will see that the remainder is 6
in both cases. The general solution is 26 -I- k7 with k being any integer.
Let k = 2, and find another solution and check it.

If the solution is negative as a result of the number of terms in the
continued fraction being odd, then add to this a multiple of the modulus
large enough to give a positive solution. The positive solutions are
easier to check, but you should also investigate the problem of checking

your negative solutions.

Exercise Set 10

Find a solution for the following convergences, using continued frac-
tions and also show the, general solution. Use the general solution to
find a second solution and check this answer.

1. 7x mf 9(mod 5)

3. 13x 21(mod 9)

2. 17x 19(mod 12)

4. 29x 48(mod 11)

If you would like to know more about congruences, you can find a
very good discussion of this topic in the book by Carl H. Denbow

and Victor Goedicke: Foundations of Mathematics. New York: Harper
and Brothers, 1959. Chapter 15.



CHAPTER 5

CONTINUED FRACTIONS

AND DETERMINANTS

AN INTERESTING QUESTION

Would it be possible to find the nth convergent for a continued frac-
tion without finding first all of the preceding convergents? Mathe-
maticians worked with continued fractions for many years looking
for a way to do this. It can be done, and in doing it you will discover
an interesting relationship between continued fractions and determi-
nants. If you have not studied determinants, your teacher will be glad
to help you with the elementary operations that are referred to here.

Let us first consider the problem of finding the numerator, r, of the
nth convergent. We shall start our investigation by writing the equa-
tion r = anrn_i rn_..2 (which, is the same as ctr_i = rn) for the
numerator :of the first five convergents of a continued fraction:

air° + = 7.1

a2r1 ro = r2
asr2 = ra

a4r3 + 7.2 = r4

a5r, + r3 = r5.
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Now rearrange these equations in the following manner:

r-1 airo rl

ro r2

asrs rs

rs asrs r4

rs (cgs

= 0

=0
=0
=0

rs = 0.

27

We know by definition that r_1 = 0, ro = 1. Therefore r1 = ai
and, using r1 = al for our first equation, we now have the following
equations:

r1 =

asri 7'2 - 1

(Ars rs = 0

II A- (cos r4 = 0
rs asrs rs = 0.

Here we have five linear equations in the five unknowns, ri through rs.
We can solve for any one of the unknowns by using determinants.

In particular, let us solve for rs:

1 0 0 0 ai1 0 0 1
1 as 1 0 0
0 1 a 4 1 0
0 0 1 as 0

rs = 1 0 0 0 0
as 1 0 0 0
1 as 1 0 0
0 1 a 4 - 1 0
0 0 1 a 5 - 1

If we think in terms of evaluating the denominator determinant by
minors, it becomes apparent that the value of this determinant is
( -1)s in this case or ( -1)^ in the general case. Now let us place the
first column of the numerator determinant in the first position by inter-
changing successively columns 5 and 4, 4 and 3, 3 and 2, 2 and 1. Recall
that interchanging two columns of a determinant results in the sign of
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the determinant being changed. So to get the last column in the first
position, we require four or n 1 changes of the sign. Now let us change
the sign of the elements in the new first column. It is also true that
changing the signs of the elements in a column changes the sign of the
determinant. We have made n 1 + 1 changes of the sign of the
determinant, which is the same as making the alterations of the deter-
minant mentioned above and then multiplying the determinant by
( -1) ". But remember that the denominator determinant is equal to
( 1)* also, so these values cancel out regardless of whether n is even
or odd. So for rs (the numerator of the fifth convergent) we have the
following:

as 1 0 0 0
1 as 1 0 0

rs an 0 1 as 1 0
0 0 1 as 1
0 0 0 1 as

The form of the determinant is easy to remember, and it is not diffi-
cult to evaluate by minors with respect to the first column. Deter-
minants of this type are called continuants or cumulants.

To find the determinant for ss (the denominator of the fifth con-
vergent), we proceed in the same way as we did for rs. Doing so, we
get the following:

1 1 0 0 0
0 as 1 0 0

86 az 0 1 as 1 0
0 0 1 as 1
0 0 0 1 as

But this determinant can be simplified by expanding by minors with
respect to the first column.

86

Doing so, we get the

as 1 0 0
1 as 1 0
0 1 as 1
0 0 1 as

following:

This process of finding a convergent without first finding the previous
convergents will now be illustrated with an example. Using deter-
"Perron, Oskar. Die Lehre von den Keitenbrikhen. New York: Chelsea Publishing
Co., 1950. p. 11.
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minants we evaluate the fourth convergent of the continued fraction
for -W. All we need are the first four terms: al, as, as, and a4.

EXAMPLE.

r4
C4 am

84

205
2

1

10
1 3

1

01
2

74

2 1 0 0
1 1 1 0
0 1 3 1
0 0 1 2

+
1+

2

1

3

1

1

0

+

1

3
1

1

2 +6

01
2

1

2 (6

1 1 0
1 3 1
0 1 2

+ 1 + 2)

all

1 (-6 1)

1 1
1 3
0 1

2.9 + 7

01
2

25
6 + 1 + 2

We can show that this really is the fourth convergent by completing
a convergent table (Table XII) for the first four convergents of the
continued fraction for W. We already have the first four a's.

TAPIA XII

n 1 0'1 2 3 4
a. 2 1 : 3 2
r. 0 1 2 3 11 25
8 1 0 1 1 4 9

Exorcise So 11

Using determinants, find the indicated convergents of the continued
fractions for the following numbers. Check your answers by making
a table of convergents.

I. Third convergent for 44 = ?

2. Third convergent for I; ?

3. Fourth convergent for 44 = ?

Of course, the fact that it is easier to get the desired convergents by
first constructing a convergent table is not important. Our objective
is to get new ideas and observe new relationships.



CHAPTER 6

SOME PRACTICAL

APPLICATIONS OF

CONTINUED FRACTIONS

PART 1 s A METHOD FOR FINDING THE TERMS

In many of the practical applications of continued fractions it is
necessary to write the continued fraction for rational numbers in which
the numerator and denominator are quite large. To do this you need
a convenient method for finding the terms. Observe the way the divi-
sions involved in the expansion of 4-68-4 are arranged:

584

+2+
1

169 1/EXAMPLE.

1ffi ,l'i 5 -I- 13' jai / 7 + 5

Ar
507 2 ,as
77M-45

154 5 /4
1697W4 A(

10777 1 r
75 7
-171-5 Ar

14 2'
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If you are interested primarily in obtaining the terms of the continued
fraction, all you need to do is carry out the divisions as shown at the
lower-left in the example for M. You then keep dividing each re-
mainder into the previous divisor until you get a remainder of sera.
The quotients you have obtained are then the terms of the continued
fraction, as indicated by the arrows, and they can be placed directly
in a convergent table to be used in calculating the convergents.

PART 21 USING CONTINUED FRACTIONS TO SOLVE GEARRATIO
PROBLEMS

Continued fractions become very practical mathematical tools for a
machinist who works with lathes or other instruments where shafts
are made to turn by means of gear wheels. The reason for using con-
tinued fractions in such situations is that most gear wheels used in
machine shops have no less than 20 teeth and no more than 100 teeth.
A gear wheel with less than 20 teeth does not mesh smoothly, and if
there are more than 100 teeth the teeth are so small that They are im-
practical.

If a machinist wants two shafts, A and B, to be connected by two
gear wheels so that shaft A revolves 37 times every time shaft B re-
volves 51 times, he places a gear wheel with 37 teeth on shaft B and a
gear wheel with 51 teeth on shaft A. Then if the gear wheels mesh,
the ratio of the number of revolutions of A to the number of revolutions
of B after any period of time will be 4-1. Remember that the shaft
driven by the gear with the larger number of teeth turns more slowly
than the shaft driven by the gear wheel with the smaller number of
teeth.

FIRST EXAMPLE

The problem is that in certain cases the machinist is asked to set up
his machine so that the ratio of the number of revolutions of one shaft
to the number of revolutions of the other after any period of time is,
for example, 0.6713. Now this desired ratio, which was given in decimal
form, can be expressed as a fraction: 160.701030. Two gear wheels, one
with 6713 teeth and the other with 10,000 teeth, would do the job;
however, we must remember that the number of teeth must be no more
than 100 and no less than twenty. So the machinist's problem is to
find a fraction which is very near to 160.701o3o, but whose members are no more
than 100 and no less than 20. This is done by expanding the fraction,6M
1 0.0001 into a continued fraction and forming a table of convergents.
Recall from a previous discussion that each successive convergent is
nearer to the number the continued fraction represents than the pre-
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ceding one. Therefore the machinist keeps evaluating the convergents
until one gives a numerator or denominator greater than 100. He then
selects the immediately preceding convergent as the fraction he will use
to approximate the desired ratio which was given as a decimal.

Let us now solve the problem described above.

6713
=

1

10,000
0 +

1
1

2+ 1

1

TAILL XIII

1+ 1+ I
5 +S

n 1 0 1 2 3 4 5 6 7 8 9
a. 0 1 2 23 1 1 1 5 8r 0 1 0 1 2 47 96 145 821 6,713
s 1 0 1. 1 3 70 73 143 216 1,223 10,000

We select the fifth convergent, ÷:, as our approximation to 0.6713.
Using the formula for the size of the difference between the value of a
continued fraction and its fifth convergent, we have the following in-
equalities:

10.8713
Y549 I < (73)(143) I'

I0.6713 .14.1 < I 10,439

0.6713 73I < (0.000085 1 .

According to the last inequality, we can see that the error in using two
gears with 49 teeth and 73 teeth, respectively, instead of two gears with
6,713 teeth and 10,000 teeth, respectively, is less than 0.000095. To see
exactly how large the error is, you should divide 49 by 73 and subtract
the quotient from 0.6713.

SECOND EXAMPLE

Find a rational number by using continued fractions which would be a
good substitute for a machinist to use in setting up a gear ratio instead of
the decimal 0.3847.
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0.3847 = 3'847 al

0
10,000 )3,847

2
r

V,7,694 1

3,847 WO 07)

2,306 W,147
2,306 1 a,

1,541 2.A a,
1,541 gr3F6

765 )1,5711 41,
1,520 69

11 1765
60
105
99 1 a,

376
6 1 41>/a

5 5
ITS

5

TAIIILIC XIV

n 1 0 1 2 3 4 5 6 7 8 9
a. 0 2 1 1 2 69 1 1 5
r. 0 1 0 1 1 2 5 347 352 699 3,847
s. 1 0 1 2 3 5 13 902 915 1,817 10,000

We notice that in the fifth convergent, A, both the numerator and
denominator are less than 20, so this is not a suitable rational approxi-
mation to 0.3847. The sixth convergent is IN and is unsuitable because
its terms are greater than 100. We now notice that as is 2, and as is 69, an
unusually large jump. From a previous discussion we know that -al is
nearer to 0.3847 than is A. So instead of using 69 as a multiplier, we use
the largest integer between 2 and 69 that will result in both the numera-
tor and denominator being no greater than 100. Accordingly we select
7 as our multiplier, and we find that 7 5 + 2 = 37, and 7 13 + 5 = 96;
so we choose 41 as our rational approximation to 0.2847. Dividing, we
find 44 0.385+.

You may have anticipated the next question. What happens if we
want a suitable rational approximation to a' number such as 0.0327?
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The method we have been using will yield convergents C4 aa and
Cs = Th. In this case the machinist may have to use compound gears.
This means that he will select a convergent such that the numerator
is larger than 20, find factors of the denominator which are no less than
20 or no more than 100, and use these in a proper arrangement to achieve
the desired ratio.

If you would like to read a good discussion of compound gears see:
John M. Christman's Shop Mathematics. New York: The Macmillian
Company, 1946.

Exercise Sit 12

By using continued fractions, find a rational number for a machinist
to use in setting up a gear ratio as a suitable substitute for each of the
decimals given below.

1. 0.639 2. 0.547 3. 0.713 4. 0.3847

PART 3: FINDING RATIONAL APPROXIMATIONS TO THE NUMBERS
it AND s

You may find rational approximations to irrational numbers such as
IC and $ by employing the methods described earlier in Parts 1 and 2.
Consider first the following decimal approximations:

IC ft 3.1 4 1 5 9 2 6 5 3 5

gg 2.7 1 8 2 8 1 8 2 9 4 5 9.

Of course you can obtain a rational number approximating u by taking,
for example, the first five digits of the above decimal; i.e., 3.1 4 1 5, and
writing this as a rational number as follows:

1,415 3,14153.1415 = 3
10,000 10,000'

You could also find a rational number which is a better approximation
to w by using the first six digits of the given decimal; i.e., 3.1 4 1 5 9.
This would give:

3.14159 - 3 14,159 314,159
100,000 100,000'

However, by using continued fractions you can find rational num-
bers which approximate the value u better than 3.1 4 1 5 does, and
which have numerators less than 314,159 and denominators less than
100,000. As an illustration let us solve now the problem just suggested.
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Problem 1

Find five rational numbers each of which is a closer approximation
to u than is 3.1415, and each of which has a numerator less than 314,159
and a denominator less than 100,000.

Solution: The decimals 3.1415 and 3.14159 are both approximations
to %, and 3.14159 is a closer approximation to r than is 3.1415. The
rational numbers corresponding to these decimals are

31,415 and
10,000

314,159
100,000'

Let us set up the convergent table for the number 101 40: 01 50 50 This con-
vergent table is given in Table XV.

TAB= XV

n 1 0 1 2 3 4 5 6 7 8
as 3 7 15 1 25 1 7 4
r. 0 1 3 22 333 355 9,208 9 563 76,149 314,159

100,000s 1 0 1 7 106 113 2,931 3,044 24,239

Did you notice that the second convergent is 272- which is, probably,
the first rational approximation to a that you learned?

Now 3.14159 is nearer to a than is 3.1415, therefore any number
nearer to 3.14159 than is 3.1415 will be nearer to a than is 3.1415. To
find the required rational numbers, you only need to write the con-
vergents as decimals until you find one that is nearer than 3.1415 to
3.14159. The difference between 3.1415 and 3.14159 is 0.00009. Round-
ing off decimals at the fifth decimal place we have the following calcu-
lations:

Cl
3

=
and

Cs =
22

and

3
3 irm

and

= 3.00000,

3.14159 3.00000 = 0.14159.

sv, 3.14286,

3.14286 3.14159 = 0.00127.

3.14151,

3.14159 3.14151 = 0.00008.

Note that 0.00008 is less than 0.00009, which shows that 444. is nearer
than 3.1415 is to 3.14159. Since each convergent in the convergent
table for 3.14159 is nearer to 3.14159 than the preceding convergent,
we have the result that Cs, C4, Cs, Cs, and C7 are rational numbers
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with the required properties; i.e., each of the rational numbers

414, and Rif: is nearer than 3.1415 is to lc and each has

a numerator less than 314,159 and a denominator less than 100,000.
It should be noted that this same process can be used to find other

rational approximations to any irrational number when a decimal ap-

proximation is given.

Words. 12a.

Find five rational numbers such that each is nearer than 2.7183 to

the number s, and such that the numerator of each is less than 271,828

and the denominator of each is less than 100,000.

Answer for Exercise 12a.

The convergent table for -Wri, or 2.71828, is given in Table XVI.

TAMA XVI

n 1 0 1 2 3 4 5 6
a 2 1 2 1 1 4
r 0 1 2 3 8 11 19 87
s 1 0 1 1 3 4 7 32

(Table XVI
continued below)

n 7 8 9 10 11 12 13

a. 1 1 6 10 1 1 2

r 106 193 1,264 12,833 14,097 26,930 67,957

8 39 71 465 4,721 5,186 9,907 25,000

67 957 271,828
Note: Cis = =-

25,000 100,000'

The difference between 2.71828 and

2.71828 2.7182

06
C7 =

1
2.71795,

2.7182 is

= 0.00008.

2.71795 = 0.00033.

2.71828 = 0.00003.

39

and 2.71828

3Cs= 2.71831,191 ms
7

and 2.71831



SOME PRACTICAL APPLICATIONS

We note that 0.00003 is less than 0.00008, which means that is
nearer than 2.7182 is to 2.71828. Therefore the required rational num-
bers are

193 1,264 12,833 14,097 and 26,930
71 465 4721 5186 9907

PART 4: CONTINUED FRACTIONS AND THE SLIDE RULE

You can see an interesting relationship between continued fractions
and settings on a slide rule if you refer to the convergent table for

.14169
100.00o 3.14159 which we used as an approximation to a in Part 3.
Instead of using long division to check that the rational numbers C4
through C7 really are approximations to a, do this division on a slide
rule. After dividing the numerator by the denominator of several of
these numbers; e.g., 44,4, -101, and ;N::, you will be
convinced that they are indeed all very good approximations to it,
which is usually indicated on the D scale of a slide rule.

For example, to divide 355 by 113 on a slide rule, place the hairline
of the indicator over 355 on the D scale. Then place 113 on the C
scale under the hairline. The result of the division will be read on the
D scale under the 1 at the left of the C scale.

Exercise Set 12b

Perform the following divisions on a slide rule (the numbers below
were derived as solutions for Problem 1).

333 355 9,208 9,563 76,149
106 113 2,931 3,044 24,239

Answer for Exercise 1 2b

The result of each division should read a on the D scale.



CHAPTER 7

CONTINUED FRACTIONS

AND QUADRATIC

IRRATIONAL NUMBERS

SOME INTERESTING RELATIONSHIPS

We shall now investigate some of the interesting relationships be-
tween continued fractions and quadratic irrational numbers. These

are numbers of the form A -I- VII where A and C are integers, C 0,

and B is a positive integer such that Niri is irrational.

You should first fix in mind the concept of the integer part of a num-
ber. This concept will be very useful to you as you read the rest of this
booklet. Be certain you understand the statements below which were
chosen to help make the idea clear.

DEFINITION : The integer part of a number is the largest integer which
is less than or equal to the number.

i1. The integer part of 35 is 3.

2. The integer part of 6.75 is 6.

3. The integer part of Nig is 2 because Nig is between 2 and 3.

4. The integer pert of N/17 + 5 is 9.
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5. The integer part of Vra. 1 is 2.

VIg
6. The integer part of

4 + is 2.

1
i7. The integer part of 3-4 is 4.

8. The integer part of
2

4
is 1.

You can find the integer part of a quadratic irrational quickly if

you first think of the integer part of the irrational part. The integer

part of a number, N, is often written [NJ; for example, [2.07] = 2.

However, this notation will not be used in this booklet.

Exercise Set 13

Find the integer part of each of the following numbers:

1. 9.63 2. V8-5 3' 3+ 4. 5.2 5.

Before going further, it might be well to review the process of ration-

alizing the denominator of a fraction of the form D
v-E. You may

rationalize the denominator by multiplying both numerator and de-
nominator by the conjugate of the denominator. The result of this

multiplication will be a fraction whose denominator contains no ir-

rational number.

EXAMPLE 1. Rationalize the denominator in the fraction 3

2 2 (3 N T D 6 (3 + 6 (3 +3 v ( 3 ' ) ( 3 + / ) 9 4 5

A study of the relationships between continued fractions and ir-

rational numbers can be instrumental in helping you gain a deeper

insight into the relationships between rational and irrational numbers.

In this chapter we will be dealing with quadratic irrationals only. You

will first learn how to expand quadratic irrationals into continued frac-

tions, using what we shall call the three-step process.

The three-step process will now be illustrated by developing the con-

tinued fraction for Vg. Numbers such as which are of the form

where B is a positive integer, are called pure quadratic irrationals.

2
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Step 1. The integer part of vi is 2.
Write: V§ = 2 + - 2

or = 2 + (-2 + Vg).

Step 2. Write 2 + vi as 1

1

2 + Nig

Step 3. Rationalize the denominator in

1 ( 2 2

(-2 + V8) (-2 Nig) 4

We now have Vt = 2 +
2 +

1

2+
Vi 2 Nig 2 +V8

Let us call this step
splitting the number.

We shall call this step
the flipping operation.

8

1

4

4 4

We keep repeating these three steps. The three steps of the threestep
process are as follows:

(1) split (2) flip (3) rationalize.

Now apply the three steps to 2 +4V8, as shown below.

Step 1. The integer part of 2 + is 1.

Split 2 +4s1, getting: 1 + (2 +4'4 1) 2 + 48 4

2 +
4

Step 2. Flip 2 + v
getting:

4
1

42 +V8
4

Step 3. Rationalize the denominator in getting:

4 2 4(-2 Nig) 4(-2
(-2v'8) 2 V8

2+
1

4 8 4
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Now we can write:
1

Nig I. 2+
1

1+ 2 +V
1

Now perform the three-step process on
2 +101 as shown below.

Step 1. Split
2 +101. The integer part of 2 +1 Vi3 is 4.

2+ 4 + 2 + 4 =, 4 + 2 + Nig 4 4 + 2 + Nig
1 1 1 1

2 + Vg, getting:Step 2. Flip
1

1 1

2+ 0-3

Step 3. Rationalize the denominator in 1 ,, getting:2 + V8
1 (-2 2 V/3 2 +

(-2 + 0 1 ) (-2 V.8") 4 8 4

Now we have:
1

4+

We could now repeat the three-step process on
2 +40i, but looking

back over our work we note that we have already applied the three

steps to 2 +40i, and that the next two terms that arose were 1 and 4.

Then if we applied the three steps to
2 Oi again, we should again

4
get the terms 1 and 4. Therefore the terms are repeating. The con-
tinued fraction for v will never terminate, and we can now express
Va as the following continued fraction.

= 2 + 1

1+ 1

1

4+ 1

1+ 14+ +1
4 +
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Let us now examine
continued fraction.

From

CONTINUED TRACTIONS

the convergent table (Table XVII) for this

TAMS XVII

n 1 0 1 2T 3 4 5 6 7 8
a. '2 1 4 1 4' 1 4 1
r. 0 1 2 3 14 17 82 99 478 577
s. 1 0 1 1 5 6 29 35 169 204

The fifth convergent,

The sixth convergent,

82
29'

131:'

The seventh convergent, 1-6-
478

6,

The eighth convergent, 577
2-6-4, an

a standard set of tables, we read:

Exercis. Sot 14

2.82758+

2.82857+

2.82840+

2.82843+

2.828427+.

Using the three-step process, expand the following pure quadratic
irrationals into continued fractions until you see the terms repeating.
The terms you find may be checked against those given in Appendix

B: Answers to Exercises.)

1. V11 2. V56 3. %/39 4. AtTli

Next, divide two of the larger convergents for each number getting
a decimal value, and compare this with the values in the square root
table in, a mathematics handbook or extract the square root by a dif-
ferent method.

COMPARISON OF CONTINUED FRACTION RERRESENTATION
WITH DECIMAL RERRESENPATION

It is interesting-to compare the continuedµ fractionrrepresentation of
an irrational with lhe-decimal expression of an irrational. We know
that the digits in the-decimal expression of an irrational number never
repeat. We =also knownthat if theldigitw,of a4ecimal do repeat, then
that decimal represents ya. rational nuniber. (If you are not familiar
with these ideas youtmay wish to refer to Proof Nro. 54indAppendix
But your have justiound that the terms of the continued fractions of
four irrationalanumbersphave nicely repeatinrterms. Did your notice
that in each oftwour-answers thellast termobeforrthei ningtof each
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repeating set of terms is twice the first term? We shall prove later that
this must always be true. What else can you find that is interesting
about the terms of the continued fractions which you have developed?

USING THE THREE-STEP PROCESS TO EXPAND QUADRATIC IRRATIONALS

The three-step process can also be/used to expand more general quad-

ratic irrationals of the type where A and C are integers dif-

ferent from zero, and where Nili is an irrational number.

EXAMPLE 2. Use the three-step process to develop the continued
+ Va".3fraction for 1

2

Step 1.
1 + V-3-g 3+ v-3-5-+ 1 + N/B- 6

2 2 2

Step 2.
5 + V-3-3 = 3 13 + 4.

2 2

Step 3.
1

5 +

3 + 3 +
2 (-5 Vg-5") 2 (-5 VW5)

1

(-5 + V35) (-5 Vg) 25 35

Step 1.
1 1

3+ 5 + Nig 3 4- ( 5+
5
Nig 2

5
)2 +

1 13 + = 3 + =
5 + x/35 10 5 +2 + 2 + V7.35

5 5

Step 2. Step 3.
13+ = 3 + 1

1 12+ 2 +
5 5 (-5 Va-g)

5 + VB- 5 + Vai (-5 Vag)
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Step 1.
1 13+ 3 -I-

1 12+ 5 + g
2

2 +
5 + (5 + V-13

2

13+ 3+ 1

1 12 -I-
5 + 5 + v-g-5- - 10 5 + Val2 +

5 +2 2

But we have already applied the process to 5 +
V5.8. so the terms2

are repeating, and the continued fraction for +1 + 5 appears as
2

follows:
+1 + Nig 1= 3 +

2 1

2+ 1

5 + 12 +

It requires a considerable amount of effort to expand a quadratic
irrational by the three-step proceba. However, since the ideas we are
to explore stem from continued fractions that have been developed in
this manner it is important that you know how to expand any quadratic
irrational number by the three-step process. Later in this chapter we
will develop an easier method for finding the terms of a quadratic.
Now let us observe one more expansion.

EXAMPLE 3. Expand
2 Nig

into a continued fraction.3

Step 1.
2 + V 5 2 + V-5- 1 = 1 + 2 + Nig 3 = 1 + 1+V-5-3 -r 3 3 3

Step 2. Step 3.
1 11+ 1+ =3 3 (-1 V-6)1 + vg (-1 + ../-)(-1 ../-)

1+ 1 1 + 1

3(-1 %IS) 3(1 + Nig)4 4
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But 3 is not an exact divisor of 4. This is the first case where we have
encountered this problem. To handle this, multiply the numerator and

the denominator of the original expression, 2 +
3

, by 3, getting
6 -1-

9
V-4. Then expand this equivalent quadratic irrational, and all

of the divisions will be exact. The first three steps are carried out here

as an illustration. We start our expansion using 6 +9V-4-8 instead of
2 -1- s18.

3

6 -1- 1 (6 -1- Vig 1)
9

9 -1- %rig 9
9

1 + 3 4- 1 + 1

9 9

1+
3 -1-

1 1

9 (-3 4/) 1 4- 9(-3 45)
(-3 -1- VE)(-3 45) 36

1

3 + 45
4

Exercise Set 15

Expand the following quadratic irrationals using the three-step
process. Carry out the expansion until the terms start to repeat.

1 + VI71 3 + Nig 6
1.

2
2'

2
+
2

Each of the quadratic irrationals that we have expanded into a con-
tinued fraction has resulted in a continued fraction with terms that
repeat after a certain point. Do you feel that this would be true for
every quadratic irrational? This question will be discussed again in a
later chapter.

CONVERTING A REPEATING CONTINUED FRACTION
INTO A QUADRATIC IRRATIONAL

We shall consider next the problem of converting a continued frac-
tion which has repeating terms into a quadratic irrational. A method
of doing this will now be illustrated by an example.
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EXAMPLE 4.

Convert 2 + 1

5
1

1

1

1

11 + a-

CONTINUED FRACTIONS

to the form A +

Solution. Now if we let X represent the continued fraction itself, and
Y represent the repeating part, we get the following equations:

Equation 1. Equation 2.

X = 2+ 1 Y= 5+ 1

Equation 3.

X = 2 + Y

1

1

3+
5+

1 +.5+...

1

Solving Equation 2 for Y, we find the following:

Y = 5 + 1 5+ 1 5 + 1

1 1 1 + Y1 + 1+ 3Y + 1 3Y + 13 + 7
Y

1 3Y+ 1 20Y + 5 + 3Y + 15+ = 5 +3Y+ 1+ Y 4Y + 1 4Y+ 1
3Y + 1

23Y + 6
4Y + 1

Y
23Y + 6We now have the equation 4Y + i

This can be converted as follows:

4Y2 + Y = 23Y + 6
4Y2 22Y 6 = 0
2Y2 11Y 3 = 0.
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Y is a root of the quadratic equation 2Y' 1117 3 = 0. We also
note, now, that Y is positive. Using the quadratic equation we can
now write Y as follows:

Y= 11 + V112 4(2)(-3)
2 2

Y= 11+ V1 iT171- 24
2 2

Y= 11 +
4

Substituting this value of Y in Equation 3, we can evaluate X, as
follows:

1 1 4X = 2 + = 2 + 2 +Y 11 + 11 + V145
4

2+ 4 (11 V-17g) 11 VIZ
(11 + VT41") (11 V1715) 6

12 + 11 V145 1 + VTA-5'6 6

The given repeating continued fraction can now be exhibited as a quad-

ratic irrational number as required. Since X = 1 + V145
6 '

2+ 1 1 + V145
1 65+

1+ 1

3+ 15+
1 +

1

Exercise Set 16

Use the method which was illustrated in Example 4 to convert the fol-
lowing repeating continued fractions to quadratic irrational numbers.

1. 2 + 1
2. 3 + 1

1 1
3 2+

1 11 +
1

1 +
3 + 2 +I + , +
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3. 4 + 1

3+
12+ 11

NON-TERMINATING CONTINUED FRACTIONS

We noted earlier that the continued fraction that corresponds to a
rational number always terminates. You have noticed that the con-
tinued fractions which you have obtained for several irrational num-
bers never terminate but give rise to an infinite succession of terms. We
shall now prove that this is true of all irrational numbers.

We start by investigating the expansion of an irrational number, X,
into a continued fraction.

X al + X'
Here ai is the integer part of X.

X = + 1

Let 1X2 = X'.

X = +
X:

If X2 is a rational number, we can now write

X X2ai + 1
X2

This last equation implies that X is equal to a rational number, which
is a contradiction since we assumed X to be irrational. We conclude,
then, that X2 is irrational.

The same argument could be used to show that X3 is irrational,
also X4, X2, etc. Our conclusion is that the continued fraction for any
irrational number will not terminate.

TERM TABLES

Now that you have learned to expand quadratic irrationals into
continued fractions, you are in a position to study some interesting rela-
tionships concerning the terms of these continued fractions. You will
now learn a way to find the terms for the continued fraction of a quad-
ratic irrational quickly and easily. This will be done through the use
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of term tables. Recall now our previous discussion: just where did we
get the terms of continued fractions? Each term, you remember, was

the integer part of some expression of the type A CAB. We shall

now seek formulas that will give us the A's and C's more quickly than
the three-step process.

We start by expanding the irrational
A + VT3

. We note that

A + VT3 = 1+ where a, is the integer part of A Cam, and that
us

u2 is an irrational of the type
A: + VT3

C2
. We now try to discover a

way of expressing us which will be A' +
s
VT3 in terms of the integers

Cs
involved in u2, namely: A2 and C2 (B does not change).

We now apply the three-step process to u2:

= a2
(A2 + VT3

C2
a2), where a2 is the integer part of u2;

, A2 a2C2 VT3.
u2 = -I-

A2 + 1/B a2C2
a2

C2 C2

u2 = a2 +
C2

1 1
a: +

(A2 a2C2) + V71

1
as +

kis.
/A

2 (1 2%-)2)

(A2 a2C2) 2 B
C2

1 1
242 = a2

Us A3 + / 73
C3

C2[(A2 a2C2) 1/T31

(A2 a2C2)2 B

1
422 -I-

(a2C2 A2) + 1/T3
B (a2C2 A2)2

C2

Now by comparing these last expressions for u2 with the previous three
expressions for u2, above, we get the desired formulas for A3, and Cs:

As = a2C2

Cs
B A32

C2

A3 + VT1
us

=
C3

a3 = the integer part of u3.
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Generalizing these formulas, we have the following:

An = An-1

B A 2=

An -I- VII
Un

an = the integer part of un.

The terms of the continued fraction for Nr-71 will now be found by
using the above formulas. Remember that each A, C, and a is found
by using the preceding A, C, and a. Therefore we can get all of the
a's (the terms) of the continued fraction that we desire just by knowing

A1, Ci, and al. These, of course, are just the A, the C, and the integer
part of the original quadratic irrational. Let us now use these formulas
in finding the terms for the continued fraction for V71.

Ai + VT3
Write: Nr-71 = al + CI

al.

But .01 = 8 + 0 +IVY' 8; so we have Al = 0, C1 = 1, ai = 8.

Therefore, when using term tables to find the terms for a pure quadratic:
A1 is always 0, C1 is always 1, and al is the integer part of the given pure
quadratic irrational.

Now place these values in a term table as shown in Table XVIII.

TABLE XVIII

n 3
A 0

1

a. 8

A2 = A1 = 8 1 0 8

C2 =
B A22 =71 -82_7

CI 1

A2 + VT3 8+v'71
142

C2

a2 = the integer part of
8 +7Nr71., which is 2.
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Don't try to memorize these formulas as you make your first term
tables, but watch for the order in which you use the numbers which
are already in the table. This will help you to see that with a little
practice you can fill in the term tables without doing any "scratch"
work on the side.

Table XIX is the term table for Ain, completed for the first ten
terms. You should practice with the formulas until you understand
how the numbers in this table were obtained.

TABLE XIX

n 1 2 3 4 5 6 7 8 9 10
A 0 8 6 4 7 7 4 6 8 8
C 1 7 5 11 2 11 5 7 1 7
a 8 2 2 1 7 1 2 2 16 2

Therefore an will be the same as as, a12 the same as a4, etc. Thus the
sequence of terms a2, a:, . . . , a: will be exactly the same as the sequence
a10Notice

that A10, C10, and a10 are the same as A:,

n

and a2 respectively.

a, . . . , a17, etc. So once more a pure quadratic has given us re-
peating terms in its continued fraction. Now, what have we discovered
about the last term before the terms start to repeat? Is it twice al?

These formulas are quite general. Al and C1 do not have to be posi-
tive.
EXAMPLE. Use a term table to find the terms of the continued fraction

-I- V7
for

23
A1= 2 A2 = aiCi A1 = 1( 3) (-2) = 3 + 2 = 5

B A22 7 (5)2 7 25 18
6

a1

C1 = 3 C2
C1 3 3 3

= 1
5 +u2 = 6

a2 = 1

Table XX gives the term table for
2 + ". The first five terms3

have been evaluated. The terms start repeating at n = 5.

TABLE XX

n 1 2 3 4
A 2 5 1 2
C. 3 6 1 3 1

a. 1 1 3 1 1 3
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Let us now try to make a term table for 2 +
2A1 = 2

B =7
C1 am 2

al = 2

n 1 1 2

A 2 2

2

Al criC2 A1 = 2 . 2 2 = 2
=B A2 7 22 7 4 3

C1 2 2 2

But this last fraction is not an exact division! This happened once
before when we tried to expand 2 + Vg.

In order to avoid this problem3
in the future, let us now prove a helpful theorem.

THEOREM. In the expansion of a given quadratic irrationalA + VB
into a continued fraction, B A.2 will always be exactly

divisible by C._1 if B A2 is exactly divisible by C and only if
B A2 is exactly divisible by C.

Before proving the theorem, note that A, and Cl are respectively
the A and C of the given quadratic irrational. Also remember that
each C appearing in the continued fraction is C = B A"2

. Our
Cn-1method of proof will be to show that B (A.4.1)2 is exactly divisible

by C. if and only if B A.2 is exactly divisible by C.
Proof. By the formulas we use is constructing term tables, we findthat:

B A.+12 B (a,,CR An)2C = C C
B (a 2C 2 2aCA + A.2)

B
C

C.
B an2C. 2a.C.A. A.'

20C.A. a.2C. B A.2
C.

2a.C.A. a.2C,42 B 44.2
C.C
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The numerator, 2a.C.A. a.2C .2, in the last expression for B ,A.02
us

is obviously divisible by C.. We now have the desired result. Namely,

B A.02 is divisible by C,, if and only if B A.2 is divisible b
This means that B A:2 is divisible by CI if and only if B
divisible by CI. Therefore you should not start expanding a qu

of the form A + V-13
into a continued fraction, and you

start to construct a term table until you have checked
B A2 is divisible by C. Then if it is not, multiply the

Bdenominator of by C as follows:CAA

C(B 'Jr) BC NrAGM
C C C2

And now it is easy to see that AC= (BC)2 is di

. 2 + Nfit .In the problem of expanding

Al = 2, B 7, and CI = 2. We know tha
is not divisible by CI (which is 2). The

denominator by 2, getting 4 +
4VN.

continued fraction, and all divisions

Exercise Sot 17

y C,
i

adrati

should no

to see that
numerator ant

visible by C2.

to a continued fraction:

t BI AO (which is 7 22)
efore multiply numerator and

Now you can expand this into a

will be exact.

Make term tables for the following quadratic irrational numbers,
Carry each table out until th

1. 4-7

5.
2 + N/13

3

2.

6.
3+

4

terms start to repeat.

3. Nig

7.
3 +2 4



CHAPTER 8

CONTINUED FRACTIONS

AND PELL'S EQUATION

PRELIMINARY INVESTIGATION

Before starting a study of Pell's equation, you should re-examine the
terms of each of the continued fractions you have found so far for pure
quadratic irrationals (numbers of the type You should find that
the terms of each of these continued fractions form a sequence of the
following type:

al, a2, a3, , a., 2ai, a2, as, , 2a1, a2,

EXAMPLES.

For the terms are 3, 1, 2, 1, 6, 1, 2, 1, 6,

For Via" the terms are 4, 1, 3, 1, 8, 1, 3, 1, 8,

For Vaif the terms are 6, 1, 5, 1, 12, 1, 5, 1, 12,

You should find that the terms in your term tables for pure quadratic
irrationals also have the property that the repeating series starts with
a2, and the last term in the repeating series is 2ai. We shall later prove
that this must always be true for the terms of pure quadratic irrationals.

PELL'S EQUATION

An equation of the form x2 - Py2 = 1, where P is a positive integer,
is called a Pell's equation. We shall now show that integral values of
x and y that will satisfy any equation of this type can always be found.
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For example, x2 39y2 = 1 is a Fell's equation; and x = 25, and y = 4
are solutions for this equation.

Check; e - 39y2 = 1 252 39 42 = ?

625 39 16 = ?

625 624 = 1

Let us investigate the continued fraction for NiP to see if we can
discover a relationship between it and Pell's equation, x2 Py2 = 1,

=

VT; =
a2

a3 4-

1

1

1

1a. +
1

1

2a1

a2 a3 +

1

1

1

1

al + al +
1

VP

a2
a3

1

1

1

In the last expression for VP the last term, ano, is al + VP. Now

(since the last convergent r1t--fl in this case is equal to the number the
solo

continued fraction represents, we apply the formula for the (it + 1)th
convergent, getting:

Cri+1 =
an+trn rn-1

8,1+1 a, 4.is +
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But ano is al VP.

CONTINUED FRACTIONS

A/73 (al 1- A/ 75)r. + N-1
(al + VT)8n

VP(ai + VP)s + :4_1] = (al + T)N + N-1

058.04 + A/I3) + 08,-1 = + NA /13 + N-1

aisVP + 8.13 sn_IVP = aiN + rorP + N-1

8.P + (ais. + 8._1) VP = + + r.VP
The left and right members of this last equation are equal. But a
rational number cannot equal an irrational number. Theri=fore the
rational parts must be equal, and the irrational parts must be equal.
As a result of this observation, we have the following equations:

snP = + and aisn + r.
or = snP airn and 8,-1 = rot 048,.

But from our discussion of the crisscross products in the convergent
tables we have

ron_i son_i = (-1)n.

Now substituting in this equation the values for rn_i and R-n-1 from the
two previous equations we get the following:

rn(rn aisn) sn(4.11 air) = (-1)"
r.2 airon 138.2 + awns. = (-1)"

rn2 138.2 = (-1)".

We see that rn and sn are solutions to the equation x2 Py2 = (-1)a.
Thus, if we want integers which will satisfy an equation of the type
x2 Py2 = ( 1)", we find the terms for the continued fraction for
VP and form a table of convergents. If n is the number of terms be-
fore the term 2ai appears; then, x = 7.n and y = sn, which are the numera-
tor and denominator respectively of the nth convergent, are solutions
for the equation. If n is even, x = rn and y = sn are solutions for x2
Py2 = 1. If n is odd, we have solutions for x2 Py2 = 1. If we
insist upon solutions for x2 Py2 = 1 and if n is odd, we then use as
our solution? x = r2n and y = 82n; and since 2n is an even number, we
have

0'202 P(8202 = 1.

SOLUTIONS FOR TWO PELL'S EQUATIONS

The theory will now be illustrated by solving two Pell's equations,
one with n an even number and one with n an odd number.
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EXAMPLE 1. Find integral solutions for the equation:

x2 28y2 = 1.

First form the term table and then the convergent table for V.
TERM TABLE

n 1 2 3 4 5
0 5 4 4 5

C 1 3 4 3 1

a 5 1 3 2 3 10

CONVERGENT TABLE

n 1 0 1 2
a 5 3 2
r. 0 1 5 16 37
.9 1 0 1 3 7

For this example we use n = 4, becatise for n = 5 the term a5 = 10

which is twice ai. So the numerator and denominator of the fourth
convergent are the required values for x and y. We have x = 127 and

y = 24.

Check: X2 28y2 = 1 1272 -- 28.242 = ?

16,129 16,128 = 1

It was stated that if n is odd, then r2 and 82 would be solutions to

X2 Py2 = 1. It is true that 2n is even, but this in itself does not mean

that r2,, and 82. are solutions. However, if you will review in this

chapter our initial investigation of the form of the continued fraction for

VP, you will see that an = ano = abio, and an_i = We

could carry through the same work as before for C2,0.1 using a:no =
+ VP and get the iesult r22 Ps2,,2 = (-1)2"; and since 2n is

even we would have
ha' P82n2 = 1.

Let us now apply these ideas.

EXAMPLE 2. Find integers that satisfy the equation

x2 41y2 = 1.

TERM TABLE FOR 1/41

n 1 2 3 1 4
A 0 6 4 6
C 1 5 5 1

6 2 212

Here the term 12, which is 2a1, is a4; so n = 3. But if n is odd, the
solutions to our equation will be rb, and 82,,. In this case we will want

r5 and s6. Since the terms repeat, it is not necessary to calculate more
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a's. We know as = 2, and ae = 2. Now placing these in a convergent
table, as shown in Table XXI, we find re and se.

TABLE XXI

n 1 0 1 2 3 4 5 6a 6 2 2 12 2 2r 0 1 6 13 32 397 826 2,049s 1 0 1 2 5 62 129 320

x = re = 2,049

= se = 320

Check: x2 41y2 = 1 20492 41(320)2 = ?

4,198,401 4,198,400 = 1

Exercise Set 18

Find integral solutions for the following Pell's equations.
1. x2 7y2 = 1

4. x2 13y2 = 1

2. x2 21y2 = 1
5. x2 29y2 = 1

3. x2 34y2 = 1

Regardless of whether n is even or odd, we know 2n is even. Now
since x = r2n and y = 32n are solutions to the equation x2 + Py2 = 1,
we have here a method of obtaining more solutions to any equation ofthe type x2 + py2 = 1.

If n is even, then x = rn and y = sn satisfy the equation. Another
pair of integers which will satisfy the same equation is r2n and 82n. In
general, solutions are x = rk and y = ss for any positive integer k.
If n is odd, then you must use x = r2 and y = 82n for your first pair of
solutions. Therefore, since the product of 3 and any odd number is an
odd number, you must use x = r4 and y = 84, for your second pair of
solutions. In general, if n is odd, you will have solutions to the Pell's
equation x2 + Py2 = 1 by using x = r bn and y = - bn where b is an
even positive integer.

EXAMPLE 3. Find two pairs of integers which will satisfy the equationx2 39y2 = 1.

TERM TABLE FOR 0-0

n 1 2 3 4
A 0 6 6
Cn 1 3 1 3a 6 4 12
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Here the term 12, which is 2a1, is as; so we use n = 2 and find that xi = r2
and yi = 82 are solutions. Our discussion above tells us that x2 = r4 and

= 54 should be another pair of solutions.
Let us now construct a convergent table for the first four convergents.

CONVERGENT TABLE FOR V39

n 1 0 1 2 3 4
an 6 4 12 4
rn 0 1 6 25 306 1,249
sn 1 0 1 4 49 200

xi = r2 = 25

yi = s2 = 4

x2 = 2.4 =

Y2 = 84 =

1,249

200

Check: x2 39y2 = 1 Check: x2 39y2 = 1

252 39 . 42 = ? 12492 39 . 2002 = ?

625 624 = 1 1,560,001 1,560,000 = 1

Exercise Set 19

Using the ideas just discussed, find the next pair of solutions to the
following equations (these equations are the same as the first three
equations in Exercise Set 18).

1. x2 7y2 = 1 2. x2 21y2 = 1 3. x2 34y2 = 1

We have shown that rn and sn are integral solutions of the equation
x2 Py2 1 when n is the number of the term preceding the term
2a1 in the continued fraction for P. We also showed that r2n and 82n
are solutions. Now if n is very large, say 6, the process of obtaining all

r7
of the convergents from to ri2 involves many arithmetic computations

57 812

with numbers that are probably very large. It would, therefore, be
convenient if we could discover formulas that would enable us to find
r2n and 82n in terms of rn and sn directly, without having to evaluate all
of the r's and s's in between.

Let us start looking for such formulas by examining the case where
n = 2. Assume that r2 and 52 are the solutions to some Pell's eouation,
x2 .... py2 = 1. If this is true, r2 = x and 82 = y. We will then use these
values to compute 7.4 and 84 by means of a convergent table. If r2
and 82 are solutions, then r4 and 84 are also. After finding an expression
for ri and 54, we will attempt to express n and s4 in terms of x, y, and P.
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TABLE XXII

CONTINUED FRACTIONS

n 0 1 2 3 4
an al a2 2ai a2
rn 0 1 al aia2 + 1 = x 2aix 4- al 2ala2x I- aia2 I- x
8. 1 0 1 a2 = y 2aly -I- 1 2a1a2y 4- a2 + y

84 = 2a1a2y y a2

= aia2y a2 aia2y y but a2 = y
= aia2y y 4- y(aia2 + 1)

y(aia2 1) 4- y(aia2 1) but aia2 4- 1 = x
= yx

84 = 2xy

r4 = 2ala2x ala2 x

= (ciao x aia2x aia2

x(aia2 1) + a2(alx al) but x = ala2 + 1 and a2 = y
Z.: X X y ( a ix -F al)

Now multiply and divide y(ctix + al) by y.

r4 x2 + y2 (age + al)

Note now that any solution to x2 Py2 = 1 is determined by P;
therefore, P must appear somewhere in our expressions for r4 and 84.

+ alIs it possible that age
is equal to P? Solving x2 Py2 = 1 for

P gives:
x2 py2 = 1

py2 = x2 1

P
x2 1

y2

Now a2 = y, so multiply the numerator of a
lx

al
by a2 and the de-

nominator by y.
(ala2x1

2

The numerator of the expression for P involves 1, and the denomina-
tor is y2. The expression which we think might be equal to P has now
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a denominator of yl, which is what we want; so instead of performing a
division to get 1 in the numerator, let us add +1 and 1 to the
numerator:

r4 = x2 + y2 ((helix ala2 + 1

Y2

Now substitute x for aia2 + 1:

= x2 + y2
(aia2x + x 1)

Y2

= x2 + y2 (x(agt2 +21) 1)
y2

Again substitute x for aia2 + 1:
x (x= x2 + y2

2

Y2

x2 + y2

Y2 1).
But we saw before that

P x2 1

y2

Substitution gives us
r4 = X2 + y2P

and this is the kind of expression that we have been trying to find.
We now know that if x = 2.2 and y = 82 are solutions to x2 Py2 = 1,

then the solutions r4 and 84 are given by the formulas:

r4 = r22 + Ps% and 84 = 2r2.92.

This suggests that in general: if x1 and yi are solutions to x2 Py2 = 1,
then x2 = x12 + Pyi2 and yt = 2xiyi are also solutions. It is not difficult
to prove that these formulas always hold true. (Proof is given in Ap-
pendix A, Proof No. 4.)

The following example illustrates the use of these formulas.

EXAMPLE. xl = 161 and yi = 24 are solutions to the equation

x2 45y2 = 1.

Find another pair of integers x2 and y2 which will satisfy this equation.

x2 = al? + PY12

x2 = 1612 + 45.242

x2 = 25,921 + 25,920

x2 = 51,841

Y 2xiyi

y2 = 2(161)24

y2 = 7,728
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Check:
xs Py= us 1 51,841' 45(59,721,984) = ?

2,687,489,281 2,687,489,280 = 1

Exercin Sat 19a

The following five equations of the type x' = 1 are presented
with one pair of solutions for each equation. Using the formulas just
developed, find a second pair of solutions and check by substituting
into the original equation.

1. - 6y2 = 1 x1= 5, yi = 2
2. xl 12y'= 1 x1 7, yi 2

3. X2 - 26y2 1 x1= 5, yi = 1
4. 0,2 38y2 an 1 x1 in 37, yi =



CHAPTER 9

INITIALLY REPEATING

CONTINUED FRACTIONS

AND

QUADRATIC EQUATIONS

TERMINOLOGY EMPLOYED

At this time let us recall some of the terminology used in discussing
quadratic irrationals. Once again, by a quadratic irrational we mean

a number of the type
A + where A and C are integers, and C 0,

and B is a positive integer such that .V-fi is an irrational number.
Every quadratic irrational has a conjugate. The conjugate is the same

number with the sign of the irrational part changed. Following are
some examples:

1. The conjugate of 3 + V3 is 3

2. The conjugate of st7 is sti.
+ if . sti

3. The conjugate of 2 Is
2

5 5

If one root of a quadratic equation is irrational then the second root
is the conjugate of the first root. For example, the roots of x2 4x 1 =
0 are xi = 2 + Vg and x2 = 2
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Now look at a repeating continued fraction in which the repeating
sequence starts with al. We shall call continued fractions of this type
initially repeating continued fractions. In general, they are of the follow-
ing form.

+
a2 +

".0

1

1

1a. +
+

as +
1

1+ a +
If X stands for the number this continued fraction represents, we can
then write:

X =- ai +
a2 +

1

1

as +
1

Now in this expression X, itself, takes the place of cs,,o, so applying the
formula for the (n+ lth) convergent we have the following:

Ce+1
221 rw" -

t: ::::

isn_a ra r"-4

cdr2 (81"4 rn)lf

This last equation will be called the quadratic equation of the initially
repeating continued fraction, X. Now what can we say about the roots
of this equation? We know that X (the value of the continued fraction)
is positive. Therefore we know the equation has one positive root.
But what do we know about the other root? Since it was indicated
earlier that a particular continued fraction can represent only one
number, the other root must be either negative or equal to X. The
roots of a quadratic equation, axe + bx + c = 0, are

b +
and

b fib= 4ac
2a 2a
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If they are equal, we have

b + b V17.-4ac

65

2a 2a

or + Vb2 4ac = Vb2 4ac.

This last statement of equality can only be true if V 4ac = 0. From
the quadratic equation for our initially repeating continued fraction,

8,1X2 + (sn-i r.)X am 0,

a = b = 8,1 ra, and c rx-1.
b2 4ac a (8,1 ra)2 4(80( rx-i)
b2 4ac a (8,1 Isar 48arn-i

Now r., rn-i, 8., and 8,1 are positive integers; so (sx-i ra)'
480.-1 cannot possibly equal zero. We have, therefore, proved the
following:

THEOREM 6. The quadratic equation for an initially repeating
continued fraction always has one positive and one negative root.

FINDING THE QUADRATIC EQUATION FOR A CONTINUED FRACTION

We now find the quadratic equation for the following continued
fraction, X.

X = 3 +

X = 3 +
1 +

3 +
1 +

1

1 +

1

1

2 + 1

4 + 1

3 + 1

3 +
1 11 +

1 12 +
1

2 + 4X + 14 + X

1 1. 3 +
1 11 + 8X+ 2+X2+ X.

4X -t- 1 4X + 1
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1 1 9X + 23+ 3 + ,i, 3 +1 +4X+ 1 9X+ 2+4X+ 1 13X + 3
9X + 2 9X + 2

39X+9+9X+ 2 = 48X + 11
=13X +3 1 X 13X + 3

13X2 45X 11 = 0, which is the desired equation.

The quadratic equation for an initially repeating fraction can be
found much more easily by employing a convergent table. When we
consider the fifth term as being X, as above, the continued fraction
has five terms. Therefore X is equal to the fifth convergent for this
continued fraction. Set up a table showing the five convergents (Table
XXIII).

TABLE XXIII

n 1 0 1 2
aft 3 1 2 4 Xr 0 3 4 11 48 48X + 11
,I 1 0 1 1 3 13 13X + 3

Cl ri x 48X + 11
ss 13X + 3

13X2 45X 11 = 0
Compare the structures of the following two equations:

Eq. 1. 3x2 + 4x 2 = 0 Eq. 2. 2z2 + 4z 3 = 0

Equation 2 is formed by reversing the order of the natural numbers
which appear in the coefficients of Equation 1. The sign of each term
is left unchanged. Now what is the relation between the positive roots
of two quadratic equations constructed in this way? Let us start to
look for an answer by first finding these roots, as follows:

x=

x=

4 + V4i=4 3( 2)
2 3

2 +
3

z = 4 + 4 2(-3)

2 + VIO
z

2

Now, let x' be the conjugate of

2- Vrel
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Consider the following:

1 1_
z 2 +

2

= 2
2 + Vio
2 (-2 V1C)

(-2 + Vilj) (-2 Vit5)

2( 2 Vill)
4 10v

3

67

We have x'--.. z. Thus if two quadratic equations are constructed
z

in the same manner as the two above, and x is a positive root of one

equation, and z is a positive root of the other, then, x' ..-- -1 . This is
z

always true, but no further proof will be given here.

At this point it seems reasonable to ask, "What is the relationship

between a given initially repeating continued fraction and the continued

fraction formed by reversing the order of the repeating terms?" For

example, what is the relationship between the following two continued

fractions?

2 -I-
1

1
and 5+ 1

1

1 + 1 -1-
1

1

5 + 2 +
1

1

2+ 5+ 1

1 -I- -5-
1 + 5

Set the first equal to y and the second equal to z.

1
1

y= 2+ z= 5+ 1

1

1 -I- 1+
1

5 + 2 -I-
z

Make convergent tables for the convergents of both y and z.
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TABLE XXIV

n 1 0 1 2 3 4
a. 2 1 5 y
r. 0 1 2 3 17 17y + 3
s 1 011 1 6 6y + 1

y= 6y + 1

6y2 + y = 17y + 3

6y2 16y 3 = 0

17y + 3

CONTINUED FRACTIONS

TABLE XXV

n 1 0 1 2 3 4
a. 5 1 2 zr 0 1 5 6 17 17z -F 6
s 1 0 1 1 3 3x+ 1

x= 3z + 1
17z + 6

3x2 +x = 17z + 6

3z2 16z 6 = 0

Note that these two quadratic equations are constructed in the same

manner as those that we have been discussing. Therefore y' = .

8 +3vial. You should check theActually y
6

8 + V82
, and z =

relationship.
We see that if X is any initially repeating continued fraction and Y

is the continued fraction formed by reversing the terms of the repeating
sequence, the following statements are true.

1. X and Y are both greater than 1 because al in either case is a posi-
tive integer.

2. Since Y is greater than 1,
1

is less than 1. Therefore
1

is

negative but greater than 1.
1

3. X' (the conjugate of X) is equal to --
Y.

Therefore X' is negative
but greater than 1.

As a result of the three statements above, we can say that the follow-
ing inequalities, or properties, exist.

(a) X > 1

(b) 1 < X' < 0

Any quadratic irrational X which possesses the two properties (a) and
(b) is called a reduced quadratic irrational.

As a consequence of the observations made in this chapter, we now
state:

THEOREM 7. Every initially repeating continued fraction repre-
sents a reduced quadratic irrational.
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Exercise Set 20

Rewrite the following initially repeating continued fractions as
quadratio irrationals by finding the quadratic equation for each con-
tinued fraction and solvihg, for the positive root. Then check to see
that this root is a reduced quadratic irrational.

1. 2+ 1
2. 3+ 1

1 1
1 4- 2 +

12 + 1 + 4 +
1

12 + 4 + . . .

Historical Note

The relationships between a repeating continued fraction and the
continued fraction formed by writing the repeating sequence of terms in
reverse order were studied extensively by the young French mathema-
tician, Evariste Galois (pronounced galwah). He was born in 1811 and
died in 1832. (Note his age.) Galois made important contributions
to the field of mathematics. He was the first to prove that a fifth-
degree equation cannot, in general, be solved by ordinary algebra. He
also showed exactly which equations are solvable. His investigations
are basic to the theory of groups which is extremely important to modern-
day mathematicians.

It is amazing that Galois accomplished all of this before he was twenty-
one years of age. He was killed in a duel when he was twenty years old.
If you would like to read more of the details of the interesting and excit-
ing life of Evariste Galois, you should read Whom the Gods Love by
Leopold Infeld. New York: Whittlesey House, 1948. If you wish to
read a clear explanation of his theory of groups, you may read Galois
and the Theory of Groups by Lillian IL Lieber and Hugh Gray Lieber.
Lancaster Pennsylvania: Science Press Printing Co., 1932.

I



CHAPTER 10

INITIALLY REPEATING

CONTINUED FRACTIONS

AND REDUCED

QUADRATIC IRRATIONALS

AN INTERESTING QUESTION

We saw in Chapter 9 that every initially repeating continued fraction
represents a reduced quadratic irrational. Is it true also that the con-
tinued fraction of every reduced quadratic is initially repeating? Let
us begin our investigation by asking: "Does the continued fraction of a
reduced quadratic ever repeat in any manner?" Our next step is to
study the structure of a reduced quadratic.

Let our reduced quadratic irrational be R, and its conjugate be R'.
Now r is a root of some quadratic equation

aR2 bR c = 0

where a, b, and c are integers. Applying the quadratic formula we get

R = b f Vb2 4ac
2a
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Notice that here b is an integer, b2 4ac is an integer, and 2a is an

integer. Since R is of the form A Cam, we have A = b, B = b2

4ac, and C = 2a; and this tells us, further, that A, B, and C are integers.
If the sign before VII is not +, we can make it so by multiplying both
numerator and denominator of the quadratic irrational by --1. We
now assume R and R' to be of the form

A + A
R and R'

C C

We now use the rest of the properties of the reduced quadratic R:

bR' < 0 means < 0
2a

or
A VT3 <0.

Now multiply both sides of this inequality by C, getting

A VE <0
or A < VI3.

+
R > 1 means

b
2a > 1

A +
or C > 1;

and multiplying by C, we get A + Val3 > C.

But A < Vii;

adding Nr./71 to each side, we get A + VTI < 203. And since A +
> C, we have

20-3 > A + V.11 > C

or C < 2V-13.

Recall now that when we constructed term tables for the terms of
the continued fraction for a quadratic irrational, we employed the ex-
pression

B (A.)2

and found that B (AO' was , lways exactly divisible by C,1_1. Perhaps
this can lead us to another relationship between the A, B, and C in our
reduced quadratic.
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We want to discover all that we can about the integers A, B, and C
which are involved in a reduced quadratic. Now since R is reduced,
we have R > 1 and 1 < R' < 0; therefore, R > 0, and R R'
> 0. This means

b -}- 4ac b
2a 2a

2 V-192 4ac
or > 0.

2a

But keep in mind that it is the relationships between the integers A, B,
and C that we are trying to find. Dividing both sides of the inequality
2 we get

4ac > 02a

and now, since NCR is positive, it follows that C is positive.

b Vb2 4ac b NA' 4ac
R R' > 0 means > 0

2a 2a

219
0

2a

and since A = b, and C = 2a, we divide both sides of the inequality
by 2 getting

2a > °

or
A > 0

and since C is positive, this shows that A is positive.
We now have found the following: A is positive, B is positive, and

C is positive. So, if a quadratic irrational is reduced, all signs involved
are +.

B A' 192 4ac (-02
2a

b2- 4ac b2
2a

4ac
2a

= 2c
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Now 2c is an integer, so this shows that B A2 is always divisible
by C. And as we pointed out in our previous discussion of this property:
if B A' is not divisible by C, just multiply both numerator and
denominator of the quadratic irrational by C.

We now have four restrictions upon the integers A, B, and C of a

reduced quadratic irrational
A + VT3

. They are as follows:

(1) A, C, and V-13 are positive.

(2) A < 03.
(3) C < 2s//B.

(4) B A2 is divisible by C.

Now what does this mean? Let us make a reduced quadratic with
B = 5. What are the possibilities for A? By (1) and (2), A can only
be 1 or 2. Then what are the possibilities for C? By (3), C can only
be 1, 2, 3, or 4; and by (4), B A2 must be divisible by C. So if A
is 1, C can be 1, 2, or 4; and if A is 2, C can only be 1.

The point is that for any value of B there are only a limited number

of values of A and C that can make A + VT3 a reduced quadratic.

An + VT3We need to show now that each un of the form which

occurs in the expansion of the reduced quadratic
A CV-13 is itself a

reduced quadratic. Remember that we showed previously that the
continued fraction for any irrational number never terminates. What
do you think our conclusion will be if each of the u's is shown to be re-
duced?

We now examine the expansion of the reduced quadratic irrational,
r, into a continued fraction :

1R = al itn,
2

al is the integer part of r, which means that R2 is less than 1.

We want now to examine R2 to see if it, like R, is a reduced quadratic.
The question of whether R is reduced or not involves the conjugate of R2.

We now prove a lemma (a little proof which is instrumental in proving
a more important theorem) : Let X be a quadratic irrational, and X'
be the conjugate of X, and let h be the integer part of X. Then we have
the following:
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LEMMA. If X is written X = h + 7, and if X' is written X'
1"h + Z

then Z is the conjugate of Y.

Proof. Let

X a + Vg a
c '

cam

and let h be the integer part of X. We can then write the following:

a + Nr6 , a + Vio
no

, a += n nn
C

i-

h+ach+vrti.h+ 1

a ch + VS

1 1h+ = h +
c[(a ch) VS] (a ch) Vi

(a ch)2 b (a ch)2 b
c

1Therefore, X mg h + T, and Y
(a ch)
(a ch)2 b

hh+aV6 ch
c

h + h +
c[(a ch) + Vg]

(a ch) Ati; (a ch)2 b

1

(a ch) + 1/7T
(a ch)2 b

(a +
therefore, X' = h + 1 and

eh)
(a ch)2 b

Now by comparison we can see that Z is the conjugate of Ir. This
completes the proof of the lemma.

We now proceed with our investigation of the expansion of R (a
reduced quadratic) into a continued fraction. We ,can now state

1
R' = + /72.
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Now solving for

aiRe +1
R'Re aiRe 1

R,'(R' al) = 1
1= R'

1

a1
RI' R'

R' < 0 (by definition of a reduced quadratic), so R' is a negative
number. But al is a positive integer; therefore al R' > 1 and, since

Re ill
1

R" we have the result that R,' is negative. Thus one of

the requirements for RI being reduced is satisfied, but we must also
show that R1' > 1.

Now > 1 because R2' ""
1

R' and, as we just showed,

al R' > 1. So we can now say that RI > 0, and 1 < Ra' < 0;
which means that R, is reduced. The same argument could now be
applied to R, to show that R3 is also reduced, and to RI, etc.

We have now shown that each u. A. +
. which appears in

C
the continued fraction of the reduced quadratic R is itself reduced.
Remember that B is the same in each of these expressions, and also
that we discovered earlier that for a given B there are only a limited
number of possible integral values for A and for C. Therefore if we

carry out the expansion of A 4- siT3 far enough we are bound to come

to some pair of values for A and C that has appeared before, and from
that point on the terms will repeat. Thus, we have proved the follow-
ing theorem :

THEOREM 8. The continued fraction for a reduced quadratic ir-
rational will be a repeating continued fraction.

We must now prove that this continued fraction is initially repeating.
The plan here will be to show that if for two terms (a and am) it is true
that a. = am; then, it will be true that = If this is true,
a...4 = a and finally we will have the result that al is equal to some
following term. If this is true, it follows that the continued fraction
for a reduced quadratic is initially repeating.
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We eaall begin the investigation by concentrating our attention on
two equal terms, a and a which are equal, and by making the following
observations:

Since a. = a. we can write u. . Also according to the lemma
1 14.

1

4.1

we have u' NE a.
u.+1

Now let us examine closely the second equation. We want to show
1that gal Now age-,

Um
and u.-1 Am an-1 +

1 1Since u, = u, it follows that an . We see that all we have
14 t4

left to do is demonstrate that a,..4 EN an-1.

Consider the following equations:

114 a. +
u.14

1
an Us'

Hsi.,

1 1I mk a. +
u.4.1 1

14'

Since all of the u's are reduced, u..4.11 and u.' both lie between 1 and 0;

therefore
1

, and
1

are both greater than 0, and
1

1 posi-14.+1

u.'
tive but less than 1. It then follows from Equation (1) that a,, is the

1
integer part of ;. We assumed at the beginning that u, = u.

1 1If this is so 14 gel u.u.', and "n"u ; and since in general a. is
the integer part of

u
1

we can say that a...1 is the integer part of.1.

;. Then, also, a.,_, is the integer part of --141;. Therefore a.-1 an

a,_,, which was all we needed to show that if a = a, then ain-i
a...1. Thus = a.-1, and finally some a will equal

We have now proved:

THEOREM 9. The continued fraction expansion of any reduced
quadratic irrational is initially repeating.
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Exercise Set 21

Check the following quadratic irrationals to see which are reduced,
and then find the terms of the reduced quadratics by using a term table
or by the three-step process to see that the terms are initially repeating.

3 -1- 1 + -1 Nr17 2 + %/12
1. 3. 4.2 2 3 4

A SYMMETRIC SEQUENCE

We now turn our attention to a symmetric sequence. A symmetric
sequence of terms is a sequence that is unchanged if the terms of the se-
quence are written in reverse order. The sequence

all a* as, . a..4, a...1, a.
is symmetric if

al gm a., a, a._1, as i etc.

Here are two examples of symmetric sequences:

EXAMPLE 1. 1, 2, 3, 4, 3, 2, 1.

EXAMPLE 2. 7, 1, 1, 9, 9, 1, 1, 7.

Look once more at your term tables for numbers of the form Nii.
You will notice that in each case the terms form the following pattern:

all a21 as, as, all 2a 1 I Ail as, as, ft, 2a11 a21

The sequence of terms for a pure quadratic irrational start with al; al
is followed by a symmetric sequence, which is in turn followed by the
term 2a1. Examples are now given:

The terms of V I I ) a r e 4, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, . . .

The terms of N r 2 9 a r e 5, 2, 1, 1, 2, 10, 2, 1, 1, 10, 2, . . .

Can you explain, at this point, why this should be true? That this will
always be true can be established upon the ideas that have been pre-
sented earlier in this chapter.

Note, first, that no quadratic irrational number of the form Nib is
reduced; but, if we add the integer part of v to V, we have formed
a reduced quadratic irrational. This will be clear to you if you observe
the following example carefully.

EXAMPLE. Vg is not reduced because its conjugate, Nig, is not greater
than -1. But the integer part of Vg is 2, and 2 -1- Nig is reduced
because 2 -1- Nrg is greater than 1, and 2 - Nig is negative but greater
than -1.
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We have proved that the continued fraction for a reduced quadratic
is initially repeating. Also recall that the number represented by the
continued fraction formed by reversing the terms of an initially repeat-

ing continued fraction, R, is -- where R' is the conjugate of R.R'
Now let 03 be some pure quadratic irrational, then

NCB an al + 1 1

02 I- (73
1

1
an +

1
2a1

at

Note that al is the integer part of 03 and, as we stated earlier, +
is reduced. Then its continued fraction is initially repeating.

Eq

= al
1

1

1. +a1 = 2al

aR +
1

2ai

+
as +

1

1

1a. +
2al + at -I-

1 1
The conjugate of Niti + al is ai and

al siT3 al.

1

Now reverse the repeating terms of sig +

1 1= a. +
ai 1

VB = 2al

-F.
1

2al a +

1

1
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Eq. 2. VT3 + a1 = 2ai
1

1

VB
Observing Equation 1, we see that the continued fraction

1
at +

as +
1

1+ 2ai +

plays the same part as
1_

in Equation 2; therefore,

at +1 1a,
a, +

1

1+
2ai +

1 = a. + 1

+

at +
a, +

1

1

+
1+ at +

1

a._i + 1

a. +
Now since these last two continued fractions represent the same number,
they must be equal, which in turn means that their corresponding terms
are equal. The repeating sequence of terms is the same when reversed
so it is a symmetric sequence, and we have

a. = a,, a, = a._,, etc.

Our conclusion is that the repeating sequence of terms of the con-
tinued fraction of any number of the form Nr6 is symmetric, except
that instead of the first term being twice the integer part of v'b, it is
exactly the integer part of

LAGRANGE'S THEOREM

Still another important theorem can be proved about quadratic ir-
rationals:

LAGRANGE'S THEOREM. The continued fraction for every quadratic
irrational is a repeating continued fraction.
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Lagrange was a French mathematician who lived from 1736 to 1813.
He made contributions to many areas of mathematics, particularly to
the theory of numbers. He was also known as an astronomer.'

No proof of Lagrange's theorem will be given here, but you can find
a proof in almost any book dealing with the theory of numbers. We
have already proved that the continued fraction for any reduced quad-
ratic will be initially repeating, so all you have do to prove Lagrange's
theorem_ is to show that in the expansion of a number of the form
A + VI

into a continued fraction, one of the expressions of the form

A. + VT3
which arises in the three-step process will be reduced. ThenC

from this point on all of these expressions will be reduced quadratics,
and the original quadratic irrational will repeat. Why don't you try
to prove it?

Fink, Karl. A Brief History of Mathematics. London: The Open Court Publish-
ing Co., 1910. p. 312.



CHAPTER 11

OTHER INTERESTING

FACTS ABOUT

CONTINUED FRACTIONS

AN UNANSWERED QUESTION

As you have seen, mathematicians have studied many properties of
quadratic irrational numbers; however, irrationals involving cube roots,
fifth roots, sixth roots, etc., are much more difficult to investigate. For
instance, it is known that the first few terms of the continued fraction
expansion of :/2 appear as follows:

= 1 + 1

1

1

5 + 1

1

4+j+...
and it is not known whether or not there is any limit to how large the
terms will become."

n Davenport, H. The Higher Arithmetic. London: Hutchinson's University
Library, 1952. p. 107.
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DISCOVERING A FIBONACCI SEQUENCE

CONTINUED FRACTIONS

Doesn't it seem to you that there ought to be something special about
the following continued fraction?

0+ 1

1+ 1

1
1

1+ 1

1

1 + y

Let us see if we can discover anything interesting about it. We
might as well start by evaluating it. Setting the continued fraction
equal to y, we get

y 0 + 1

1+ 1

11 + 1 + y

1
or y = 0 + 1 + y'

Solving the second expression for y, we have

2 = 1
y2 + y 1 = 0

Now applying the quadratic formula for y:

1 ± V1 4(1)( 1)

But y is positive, so

y = 2.1

1 ± N/
Y = 2

1 + N/
Y 2

Using N/ = 2.236+ and evaluating y, gives:

1 + 2.236 +
Y = 2

y = 0.618+.

Now let us place the terms of the continued fraction in a convergent
table and see what happens.
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TAILIC XXVI

n 1 0 1 2 314 5 6 7 8 9 10
a. 0 1 1 1 1 1 1 1 1 1

r. 0 1 0 1 1 2 3 5 8 13 21 34
8. 1 0 1 1, 2 3, 5 8_ 13 21 34 55

Note that the same sequence of numbers appears in both the r-row
and the s-row of the table. Each row contains the sequence 1, 1, 2, 3,
5, 8, 13, 21, . . . in which each term is obtained by adding together the
two previous terms. This sequence of numbers is known as the Fibonacci
sequence and the terms in the sequence are called Fibonacci numbers.
Fibonacci was an Italian mathematician of the 13th century.

The Fibonacci sequence occurs repeatedly in nature. For example,
buds form a spiral as they appear on a twig of a tree, or on a bush, or
weed; and the number of buds in a spiral is always one of the numbers
in the Fibonacci sequence.

THE GOLDEN RATIO

Evaluating C10 we get the following:

= r-1° = 34 = 0.618+.
810 55

1 + VS'The number 0.618+, which is approximately the value of
2

to which each convergent is getting closer, is known as the golden sec-
tion or the golden ratio; and a rectangle in which the ratio of the width
to the length is near the golden ratio is said to be the "most beautiful
rectangle." It is easy to see that this number has had some influence
in the development of art.

CONTINUED FRACTIONS AND GEOMETRY

We will now consider a relationship between continued fractions and
geometry. We shall use continued fractions to prove that Vi is ir-
rational. Consider Figure 1.

MEM MIMED ._.
A

Rot= 1
B
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Given: A square whose side is unity and with arcs drawn as indicated.
AC2 = AB2 BC2 = 12 + 12 = 2. Therefore AC =

AC_ Nr2
BC 1

= AC CD 4- AD
BC BC

AD= 1 +
BC

= 1 + 1

BC
AD

11+
AD

' AB

= 1 + 1

1

2 ' AB

Note: AD and AB are segments of a secant
through the circle with center at C. AB is
tangent to the arc with center at C. Therefore
from plane geometry we have the following:

AB' AE AD, or A--AB
AD 4413

AE
;

AE AD + DE AD + 2BC,
and BC AB;
BC AB AB AD +2BC
AD AD.` AB AB
AD + 2AB AD

AB
2 + AB.

(See note.)

AD

= 1 + 1 We can see now that this will be a non-
1 terminating continued fraction and, as we2 + AD noted earlier, a non-terminating continued

2 +
AB

fraction represents an irrational number.



APPENDIX A

PROOFS OF

SELECTED THEOREMS

THEOREMS REFERRED TO BUT NOT PROVED IN PREVIOUS CHAPTERS

Proof No. 1

Our objective is to prove the following:

THEOREM. Every rational number can be expanded into a terminating

continued fraction.

Consider a rational number E. Dividing: 2 = ai -r-1, where ai is

the largest integer less than or equal to P. If al is equal to the division

is finished, and the continued fraction is certainly terminating. If ai

is not equal to
'

2 then ri is a positive number but less than q. Similarly:
q

r2 1.3
a2 , and = . In each case the a. is the greatest integer

ra r2 r2

in the corresponding fraction, and r.4.1 is less than rn. The r's are
positive integers that decrease with each step. Therefore an r (a re-
mainder) of zero will appear since there are only a limited number of
positive integers less than a given integer. When a remainder of zero
is obtained, the continued fraction expansion stops.
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Proof No. 2

This will be a proof by mathematical induction to show that the
formulas

r. a.r_, r...2 and a. an eon-, + 811-2

are true for all values of n. Here r and a are respectively the numerator
and denominator of the nth convergent of the continued fraction of the
rational number 8, and a is the nth term. We showed in Chapter 2
that these formulas are valid for n = 1, n = 2, n = 3, and n = 4. We
must now show that every time the formulas are true for a particular
value of n they are true for the next value of n.

We assume that the formulas are true for n = m, then we have
r, = r,..1 and a. = c

This assumption is made in accordance with what is called the induction
hypothesis.

We must now show that

a. +1 r,,, r._, and am+, = (Emoting +

We want to know the value of the following:

1= r = +
8 m+1 1

a2

Here we have m + 1 terms, but if we consider a. +
one term we have the following:

C on+1
r m+1

8 14-1
a1 +

a, +

1

1

1

a m -r
_,

a ono
1

as being only
a, +,

1

a.,_1

Using the induction hypothesis we can write

se alma IN-1 + a,t i

1

1

a,-r 1

IN+1

k.00,41
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We assumed this formula to be valid for a continued fraction having
m terms. In order to evaluate C.+, using this formula, we can consider

a. + 1
as being only one (the mth) term. According to t!sis observa-

tt m4.1

tion Cmo has only m terms, and we can evaluate it by substituting

a., +
a

1 for a. as follows:
m+1

rmo
em+1 31M 8(a.

+ Si + 80-1
0+1 , 1

a.+1
(a.a.+1 + 1) r._, ,

-r rm I
a m +I

(am "r
1

rm-t rm-2
IA 'NO

Sr
(a.a.4.1 + 1) 8m-1

SonI
a m+,

a.a.+1 + 1 r 101.4 amo

Multiply both numerator
and denominator of this
expression by amo.

ama.4.1 + 1 8m-1 + a m+1 Sms-s

+ rm-1 amorm-S
8m-1 amo8m-s

amo(amrm-i rm-2) rm-i
a mo(ams N-1 + 8m-2) + 8m-1

Note: From the induction hypothesis we have

asorm-i rigs-, = rm
and

am8m-i 8m-s aM 8m.

Making these substitutions in the last expression for Clow, above, we
have rmo am+irm rm-1

Cm+I
81110 am+18m + 0 m-1

and by definition r.+1 and 8.0 are respectively the numerator and
denominator of the m+lth convergent, C.o. Therefore,

r.4.1 = amor. +
This completes the proof.

and 8m+1 = amo8m 8m-I.

Proof No. 3

This will also be a proof by mathematical induction. The object
will be to prove that the equation

ton-1 ra-,8 = ( 1)"

is true for all values of n.
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We have shown in Chapter 2 that the equation is true for n = 1, n = 2,
and n = 3. Let us assume that the formula is true for some integer
m, with m being greater than 3. Then our induction hypothesis is

russ,_1 - = (-1)".
Now we need to show that r,,,os(,..14.1) - 8 ps+1 11.1 1) 116+1

or (-1)101.

Let us work with this relationship (which is not proved) to see if we
can discover a relationship which is simpler and might give us a clue
as to how to proceed with the proof.

r,4.0, - r",80+1 1t (-1)m+i

r,+18, (-1)(-1)m
+ No.44 t (-1) 0

r.8,1 - Nos. Z ( -1)"'

From the induction hypothesis, - ; so make
the equivalent value a substitution for ( -1) In:

rm8m+1 rm+1801 r.-18.
- s,o) s,(r._, r.o)

r,

r

2

r,+1
8m-1 + 8 in+1

r
8m-1

(a gs+Ir

g, +18 fis

- a,+Ir, r,1
81N-1 ags+18m

r. t - a, +1r,
a", a gs+18

== r"'
Finally we have a true statement.

Cppg r,
All we have now found is that: If rows, - (- Owl.' is

true, then r- = -Tr. At this point we have proved nothing, because
81,,

we do not yet know if Nos. - = (-Om-H. However, rn = r8-2--- 8-L"

is true. So if we can prove the statement, "if = then rm+18,
81. 8,,,

r,44.1 = (-1)"+1 ", we will have proved that Nos. - r.s.o
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r. re.
(-1)16+4 because it is true that Then if we can retrace our

su, Sag

steps, we will get the desired results:

r,, r,
au, s,'
r, amoras
sal --apsoss'

r,
a,",

r.

r,(8.-1 solo) =
rinamo

r to- 1

a w-1

ros-1
80-1

ast+Irm rin-1
appose,

(a.orin -I- N-1)
ses-iY

ras+1

8ms-1 8'141'

s,(r..4 re.+1),

soNso,

r ,,a r

We now know, by the induction hypothesis, that r.s.-1
( 1)"'. It follows next that, after substituting for r,,,-is., we
have

rodioso " Nods, am ( 1)1111

(1)(r,a,+1 r,40.) = (-1)"1,
Nos. r.s,+1 = (-1)"+1.

We now know that whenever the formula

ro_, r-on (-1)*
is valid for n = m, it is also valid for n = m + 1. Therefore, since we
proved in Chapter 2 that this formula is true for n = 3, we know it is
true for n = 4; and if it is true for n 2. 4, it is true for n = 5, etc. It is,
then, true for all values of n. Of course, since n is just the number of a
term, n will always be a positive integer. Thus the proof is complete.

Proof No. 4

The purpose here is to show that if the equation

X2 Py2 mg 1

is satisfied by the values x1 and m where x1 and th are integers, then,
x12 + /OP and 2x1m are also solutions to the equation.

Let A = A2 + y1213 and 1/2 tem.
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If xa and y, are really solutions, we should find that xs2 Py,' = 1.

x22 Py22 = (x1' + y12P)2 P(2ziy1)2

= x14 + 2xityi2 4Pxilyi2

= x14 2x12ve Ya41"

x22 Py 2 as (x12

Now since x1' = 1, it follows that (A2 yi2P)2 = 1; therefore,
we have x22 Py :' = 1. So = x1' + NT and y: 2xly, are also
solutions to the equation x' Py' ma 1.

Proof No. 5

This "proof" will consist of one example showing how the repeating
decimal 0.1 2 3 7 3 7 can be written as a rational number.

N as 0.1 2 3 7 3 7 3 7

10,000N = 1 2 3 7.3 7 37

100N= 1 2.3 7 3 7
rai

(subtracting) 9,900N = 1 2 2 5.0 0 0 0

1 2 2 5N = (a rational number).
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ANSWERS TO EXERCISES

Set 1

1. 2+
2+

2

4. 0 +

6. 0 +

7. 3 +

1 2. 3+

5. 1

1
3.

1

1 1+ 1

+

1

1
1

+

1+
1+ 1 1 + i

1 + 5

1 1+
2 + -

6
1+

2+

1+
1-I

4+ 2+

1

1

1

1+

1

1

2+
1

1

1+ 1+
1 +2

1

1

1+
1

5+ 1

1 + -1
4

2+ 1

13+
1 + 5

1+ 11+
1 +2
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S.t 2:

41
1 2 9-- 3.

22 5

15724 56

S.t 3

1. 3 + 1 2. 2 + 1
3.11 + ii 4 + .;-

S.t 4:
n 8 11 301. Af Of a-, T

S.t 5:
1.

3.

5.

7.

25, 21 68 157
4 ' 13' 30

n 1 0 1 2
4a. 2 3 1 2

r. 0 1 2 7 9 25
8. 1 0' 1 3 4 11

n 1 0 1 2 3 4
a. 3 1 2 3
r. 0 1 3 4 11 37
8,1 1 0 1 1 3 10

n 1 '0 1 2 3 4 5
a. 0 2 3 1 4
r. 0 1 0 1 3 4 19
8. 1 0 1 2 7 9 43

n -1 0 1 2 3 4
a. 0 5 3 2
r. 0 1 0 1 3 7
a. 1 0 1 5 16 37

2.

4.

8.

Note: Your work for Exercises 7 and 8
13

703
119the fractions and can be reduced.3 84

CONTINUED FRACTIONS

5 + 1

1+
1

1

1 + 5

2 ,2 7 31 193 1382
"' "i' if' 56 ' 401

n 1 0 1 2 3 4
a. 1 2 2 2r 0 1 1 3 7 17
a. 1 0 1 2 5 12

n 1 0 1 2 3 4
a. 2 3 1 4
r. 0 1 2 7 9 43
a. 1 0 1 3 4 19

n 1 0 1 2 3 4 I
a. 6 3 2 3
r. 0 1 6 19 44 151

1 0 1 3 7 24

n 1 0 1 2 3 4
a. 1 2 2 2
r. 0 1 1 3 7 17
8. 1 0 1 2 5 12

Sot 6:

n 0 1 2 3 4 5 6
a. 2 3 1 3 4 1
r. 0 1 2 7 9 34 145 179
8,1 1 0 1 3 4 15 64 79
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Note: Your answers up to n 6 should read: 1, +1, 1, +1, 1,
+1.

Sot 78

1 W. < I 0000055 I Z
181

< 1 0.00011 I
1061 69 i 984 299

$.t 88

1. x n 10, y mu 28. 2. x mu 50, y ors 12. 3. x as 1, y 3.
4. No integer solutions. Note that 217 and 105 have a common divisor

which is not a divisor of 6.

5. m 400, n In 700. 6. m 106, n 31.

Sot 98

For 1, any integer, we have the following:

1.x-10+x= 111, y u s 28 -311. If1= 2, x so 32 and y = 90.
2. x in 50 + 544 y 12 -131. t no 3, x WM 212 and y mu 51.
3. x 1 + 61, y mg 3 +171. If 1 mu 1, x mig 5 and y u 14.

5. m no 400 + 194 n 700 331. If 1 2, m 438 and n 766.

6. m 106 + 2531, n um 31 + 741. If 1, m mg 147 and n = 43.

Set 10:

For k, any integer, we have the following:

1. 27, or 27 + bk. 2. 95, or 95 + 12k. 3. 42, or 42 + 9k.
4. 144, or 144 + 11k.

Set 118

, 9 9 35 13z 0. -5

Sot 12:

23 35 67 371. g 2. - 3. ii-4 4. fro

Set 13:

1. 9 2. 7 3. 3 4. 6 5. 2
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Sit 14:

The terms of the continued fractions should appear as follows:

2. 7, 2,

4. 8, 1,

1. 3, 3,

3. 6, 4,

Set 15:

1. 2, 6,

Sit 16:

6, 3, 6, 3,

12, 4, 12,

3, 6, 3, 6,

6,

3, 2. 3, 2, 3, 2, 3,

14, 2, 14,

7, 1, 16, 1, 7, 1, 16,

2, 3. 3, 1, 2, 2, 2,

1. 9 + V21
6

2. 5 + 3. 9 +
2
Vi

3

Sat 17:

1.

2.

3.

4.

5.

6.

n 1 2 3 4 5 6
A. 0 6 5 5 6 6
C. 1 11 2 11 1 11
a. 6 1 5 1 12 1

n 1 2 3 4 5 6 7 8
0 4 2 4 4 2 4

Co 1 6 3 2 3 6 1 6
a,, 4 1 2 4 2 1 8 1

n 1 2 3 4 5 6 7 8
A. 0 8 7 7 3 3 7 7
C. 1 5 2 10 6 10 2 10
a. 8 3 7 1 1 1' 7 I
n 1 2 3 4 5 6 7 8
A. 3 5 2 3 3 2 5 5
Co 2 7 5 6 5 7 2 7
a. 4 1 1 1 1 1 5 1

n 1 2 3 4 5 6
A. 2 1 3 3 1 2
C. 3 4 1 4 3 3
a,, 1' 1 6 1 1 1

n 1 2 3 4 5 6 7 8
A. -3 3 3 1 4 4 1 3
C. 4 3 4 5 1 5 4 3
a. 02 1 1 8 1 1 2

. .
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7. n 1 2 3 4 5
A. 3 7 0 5 5 5
C. 2 7 5 2 5 2
a. 2 1 1

n 1 2 3 4 5
As 8 8 8 8 8

C% 16 2 4 8 4
a. 1 8 4 2 4

111

Set 18:

1. x =

4. x =

Set 19:

1. x2 =

3. x2 =

8, y = 3. 2. x = 55, y = 12.

649, y = 180. 5. x = 9,801;

127, y, = 48. 2. x2 lin 6,049;

2,449; y, = 420.

3. x = 35, y

y= 1,820.

y := 1,320.

6.

Se 19a:

1. x2 = 49, ya so 20.

3. x2 as 51, y2 8. 104

Set 20:

2. x2 = 97, y2 = 28.

4. x2 = 2,737; y2 = 444.

1. 1 + V5 L 29 + VIT-93

1,

1,

3,

2,

1,,

1,

1,

2,

1 18

Set 21:

1. Reduced; the terms are 3, 1,

2. Not reduced.

3. Not reduced.

4. Reduced; the terms are 1, 2,

95
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